Migrate langchain rag cpu example to gpu (#10450)

* add langchain rag on gpu

* add rag example in readme

* add trust_remote_code in TransformersEmbeddings.from_model_id

* add trust_remote_code in TransformersEmbeddings.from_model_id in cpu
This commit is contained in:
hxsz1997 2024-03-21 15:20:46 +08:00 committed by GitHub
parent c672e97239
commit a5f35757a4
3 changed files with 113 additions and 1 deletions

View file

@ -61,7 +61,10 @@ def main(args):
texts = text_splitter.split_text(input_doc) texts = text_splitter.split_text(input_doc)
# create embeddings and store into vectordb # create embeddings and store into vectordb
embeddings = TransformersEmbeddings.from_model_id(model_id=model_path) embeddings = TransformersEmbeddings.from_model_id(
model_id=model_path,
model_kwargs={"trust_remote_code": True}
)
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever() docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
#get relavant texts #get relavant texts

View file

@ -91,3 +91,13 @@ python chat.py -m MODEL_PATH -q QUESTION
arguments info: arguments info:
- `-m MODEL_PATH`: **required**, path to the model - `-m MODEL_PATH`: **required**, path to the model
- `-q QUESTION`: question to ask. Default is `What is AI?`. - `-q QUESTION`: question to ask. Default is `What is AI?`.
#### 5.1. RAG (Retrival Augmented Generation)
```bash
python rag.py -m <path_to_model> [-q QUESTION] [-i INPUT_PATH]
```
arguments info:
- `-m MODEL_PATH`: **required**, path to the model.
- `-q QUESTION`: question to ask. Default is `What is BigDL?`.
- `-i INPUT_PATH`: path to the input doc.

View file

@ -0,0 +1,99 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
# Code is adapted from https://python.langchain.com/docs/modules/chains/additional/question_answering.html
import torch
import argparse
from langchain.vectorstores import Chroma
from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT,
QA_PROMPT)
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks.manager import CallbackManager
from bigdl.llm.langchain.llms import TransformersLLM
from bigdl.llm.langchain.embeddings import TransformersEmbeddings
text_doc = '''
BigDL seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:
LLM: Low-bit (INT3/INT4/INT5/INT8) large language model library for Intel CPU/GPU
Orca: Distributed Big Data & AI (TF & PyTorch) Pipeline on Spark and Ray
Nano: Transparent Acceleration of Tensorflow & PyTorch Programs on Intel CPU/GPU
DLlib: "Equivalent of Spark MLlib" for Deep Learning
Chronos: Scalable Time Series Analysis using AutoML
Friesian: End-to-End Recommendation Systems
PPML: Secure Big Data and AI (with SGX Hardware Security)
'''
def main(args):
input_path = args.input_path
model_path = args.model_path
query = args.question
# split texts of input doc
if input_path is None:
input_doc = text_doc
else:
with open(input_path) as f:
input_doc = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(input_doc)
# create embeddings and store into vectordb
embeddings = TransformersEmbeddings.from_model_id(
model_id=model_path,
model_kwargs={"trust_remote_code": True},
device_map='xpu'
)
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
#get relavant texts
docs = docsearch.get_relevant_documents(query)
bigdl_llm = TransformersLLM.from_model_id(
model_id=model_path,
model_kwargs={"temperature": 0, "max_length": 1024, "trust_remote_code": True},
device_map='xpu'
)
doc_chain = load_qa_chain(
bigdl_llm, chain_type="stuff", prompt=QA_PROMPT
)
output = doc_chain.run(input_documents=docs, question=query)
print(output)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='TransformersLLM Langchain QA over Docs Example')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to transformers model')
parser.add_argument('-i', '--input-path', type=str,
help='the path to the input doc.')
parser.add_argument('-q', '--question', type=str, default='What is BigDL?',
help='qustion you want to ask.')
args = parser.parse_args()
main(args)