Migrate langchain rag cpu example to gpu (#10450)
* add langchain rag on gpu * add rag example in readme * add trust_remote_code in TransformersEmbeddings.from_model_id * add trust_remote_code in TransformersEmbeddings.from_model_id in cpu
This commit is contained in:
		
							parent
							
								
									c672e97239
								
							
						
					
					
						commit
						a5f35757a4
					
				
					 3 changed files with 113 additions and 1 deletions
				
			
		| 
						 | 
					@ -61,7 +61,10 @@ def main(args):
 | 
				
			||||||
    texts = text_splitter.split_text(input_doc)
 | 
					    texts = text_splitter.split_text(input_doc)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # create embeddings and store into vectordb
 | 
					    # create embeddings and store into vectordb
 | 
				
			||||||
    embeddings = TransformersEmbeddings.from_model_id(model_id=model_path)
 | 
					    embeddings = TransformersEmbeddings.from_model_id(
 | 
				
			||||||
 | 
					        model_id=model_path, 
 | 
				
			||||||
 | 
					        model_kwargs={"trust_remote_code": True}
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
    docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
 | 
					    docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    #get relavant texts
 | 
					    #get relavant texts
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -91,3 +91,13 @@ python chat.py -m MODEL_PATH -q QUESTION
 | 
				
			||||||
arguments info:
 | 
					arguments info:
 | 
				
			||||||
- `-m MODEL_PATH`: **required**, path to the model
 | 
					- `-m MODEL_PATH`: **required**, path to the model
 | 
				
			||||||
- `-q QUESTION`: question to ask. Default is `What is AI?`.
 | 
					- `-q QUESTION`: question to ask. Default is `What is AI?`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 5.1. RAG (Retrival Augmented Generation)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					python rag.py -m <path_to_model> [-q QUESTION] [-i INPUT_PATH]
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					arguments info:
 | 
				
			||||||
 | 
					- `-m MODEL_PATH`: **required**, path to the model.
 | 
				
			||||||
 | 
					- `-q QUESTION`: question to ask. Default is `What is BigDL?`.
 | 
				
			||||||
 | 
					- `-i INPUT_PATH`: path to the input doc.
 | 
				
			||||||
							
								
								
									
										99
									
								
								python/llm/example/GPU/LangChain/transformer_int4_gpu/rag.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										99
									
								
								python/llm/example/GPU/LangChain/transformer_int4_gpu/rag.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,99 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# This would makes sure Python is aware there is more than one sub-package within bigdl,
 | 
				
			||||||
 | 
					# physically located elsewhere.
 | 
				
			||||||
 | 
					# Otherwise there would be module not found error in non-pip's setting as Python would
 | 
				
			||||||
 | 
					# only search the first bigdl package and end up finding only one sub-package.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Code is adapted from https://python.langchain.com/docs/modules/chains/additional/question_answering.html
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from langchain.vectorstores import Chroma
 | 
				
			||||||
 | 
					from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT,
 | 
				
			||||||
 | 
					                                                     QA_PROMPT)
 | 
				
			||||||
 | 
					from langchain.text_splitter import CharacterTextSplitter
 | 
				
			||||||
 | 
					from langchain.chains.question_answering import load_qa_chain
 | 
				
			||||||
 | 
					from langchain.callbacks.manager import CallbackManager
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from bigdl.llm.langchain.llms import TransformersLLM
 | 
				
			||||||
 | 
					from bigdl.llm.langchain.embeddings import TransformersEmbeddings
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					text_doc = '''
 | 
				
			||||||
 | 
					BigDL seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:
 | 
				
			||||||
 | 
					LLM: Low-bit (INT3/INT4/INT5/INT8) large language model library for Intel CPU/GPU
 | 
				
			||||||
 | 
					Orca: Distributed Big Data & AI (TF & PyTorch) Pipeline on Spark and Ray
 | 
				
			||||||
 | 
					Nano: Transparent Acceleration of Tensorflow & PyTorch Programs on Intel CPU/GPU
 | 
				
			||||||
 | 
					DLlib: "Equivalent of Spark MLlib" for Deep Learning
 | 
				
			||||||
 | 
					Chronos: Scalable Time Series Analysis using AutoML
 | 
				
			||||||
 | 
					Friesian: End-to-End Recommendation Systems
 | 
				
			||||||
 | 
					PPML: Secure Big Data and AI (with SGX Hardware Security)
 | 
				
			||||||
 | 
					'''
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def main(args):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    input_path = args.input_path 
 | 
				
			||||||
 | 
					    model_path = args.model_path
 | 
				
			||||||
 | 
					    query = args.question
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # split texts of input doc
 | 
				
			||||||
 | 
					    if input_path is None:
 | 
				
			||||||
 | 
					        input_doc = text_doc
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        with open(input_path) as f:
 | 
				
			||||||
 | 
					            input_doc = f.read()
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
 | 
				
			||||||
 | 
					    texts = text_splitter.split_text(input_doc)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # create embeddings and store into vectordb
 | 
				
			||||||
 | 
					    embeddings = TransformersEmbeddings.from_model_id(
 | 
				
			||||||
 | 
					        model_id=model_path, 
 | 
				
			||||||
 | 
					        model_kwargs={"trust_remote_code": True},
 | 
				
			||||||
 | 
					        device_map='xpu'
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					    docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    #get relavant texts
 | 
				
			||||||
 | 
					    docs = docsearch.get_relevant_documents(query)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    bigdl_llm = TransformersLLM.from_model_id(
 | 
				
			||||||
 | 
					        model_id=model_path,
 | 
				
			||||||
 | 
					        model_kwargs={"temperature": 0, "max_length": 1024, "trust_remote_code": True},
 | 
				
			||||||
 | 
					        device_map='xpu'
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    doc_chain = load_qa_chain(
 | 
				
			||||||
 | 
					        bigdl_llm, chain_type="stuff", prompt=QA_PROMPT
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    output = doc_chain.run(input_documents=docs, question=query)
 | 
				
			||||||
 | 
					    print(output)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='TransformersLLM Langchain QA over Docs Example')
 | 
				
			||||||
 | 
					    parser.add_argument('-m','--model-path', type=str, required=True,
 | 
				
			||||||
 | 
					                        help='the path to transformers model')
 | 
				
			||||||
 | 
					    parser.add_argument('-i', '--input-path', type=str,
 | 
				
			||||||
 | 
					                        help='the path to the input doc.')
 | 
				
			||||||
 | 
					    parser.add_argument('-q', '--question', type=str, default='What is BigDL?',
 | 
				
			||||||
 | 
					                        help='qustion you want to ask.')
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    main(args)
 | 
				
			||||||
		Loading…
	
		Reference in a new issue