LLM: Add gguf falcon (#9801)
* init falcon * update convert.py * update style
This commit is contained in:
		
							parent
							
								
									0396fafed1
								
							
						
					
					
						commit
						a54cd767b1
					
				
					 6 changed files with 304 additions and 26 deletions
				
			
		| 
						 | 
					@ -7,6 +7,7 @@ In this directory, you will find examples on how to load GGUF model into `bigdl-
 | 
				
			||||||
- [Mixtral-8x7B-v0.1-GGUF](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
 | 
					- [Mixtral-8x7B-v0.1-GGUF](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
 | 
				
			||||||
- [Baichuan2-7B-Chat-GGUF](https://huggingface.co/second-state/Baichuan2-7B-Chat-GGUF/tree/main)
 | 
					- [Baichuan2-7B-Chat-GGUF](https://huggingface.co/second-state/Baichuan2-7B-Chat-GGUF/tree/main)
 | 
				
			||||||
- [Bloomz-7b1-GGUF](https://huggingface.co/hzjane/bloomz-7b1-gguf)
 | 
					- [Bloomz-7b1-GGUF](https://huggingface.co/hzjane/bloomz-7b1-gguf)
 | 
				
			||||||
 | 
					- [falcon-7b-quantized-gguf](https://huggingface.co/xaviviro/falcon-7b-quantized-gguf/tree/main)
 | 
				
			||||||
- [mpt-7b-chat-gguf](https://huggingface.co/maddes8cht/mosaicml-mpt-7b-chat-gguf/tree/main)
 | 
					- [mpt-7b-chat-gguf](https://huggingface.co/maddes8cht/mosaicml-mpt-7b-chat-gguf/tree/main)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Requirements
 | 
					## Requirements
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -7,6 +7,7 @@ In this directory, you will find examples on how to load GGUF model into `bigdl-
 | 
				
			||||||
- [Mixtral-8x7B-v0.1-GGUF](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
 | 
					- [Mixtral-8x7B-v0.1-GGUF](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
 | 
				
			||||||
- [Baichuan2-7B-Chat-GGUF](https://huggingface.co/second-state/Baichuan2-7B-Chat-GGUF/tree/main)
 | 
					- [Baichuan2-7B-Chat-GGUF](https://huggingface.co/second-state/Baichuan2-7B-Chat-GGUF/tree/main)
 | 
				
			||||||
- [Bloomz-7b1-GGUF](https://huggingface.co/hzjane/bloomz-7b1-gguf)
 | 
					- [Bloomz-7b1-GGUF](https://huggingface.co/hzjane/bloomz-7b1-gguf)
 | 
				
			||||||
 | 
					- [falcon-7b-quantized-gguf](https://huggingface.co/xaviviro/falcon-7b-quantized-gguf/tree/main)
 | 
				
			||||||
- [mpt-7b-chat-gguf](https://huggingface.co/maddes8cht/mosaicml-mpt-7b-chat-gguf/tree/main)
 | 
					- [mpt-7b-chat-gguf](https://huggingface.co/maddes8cht/mosaicml-mpt-7b-chat-gguf/tree/main)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Requirements
 | 
					## Requirements
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -523,6 +523,7 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
				
			||||||
                        bloom_attention_forward
 | 
					                        bloom_attention_forward
 | 
				
			||||||
                        )
 | 
					                        )
 | 
				
			||||||
    elif "falcon" in model.config.model_type or "RefinedWeb" in model.config.model_type:
 | 
					    elif "falcon" in model.config.model_type or "RefinedWeb" in model.config.model_type:
 | 
				
			||||||
 | 
					        if model.config.architectures is not None:
 | 
				
			||||||
            modeling_module_name = model.__class__.__module__
 | 
					            modeling_module_name = model.__class__.__module__
 | 
				
			||||||
            module = importlib.import_module(modeling_module_name)
 | 
					            module = importlib.import_module(modeling_module_name)
 | 
				
			||||||
            if "RWForCausalLM" in model.config.architectures:
 | 
					            if "RWForCausalLM" in model.config.architectures:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -57,6 +57,9 @@ def load_gguf_model(fpath: str, dtype: torch.dtype = torch.float):
 | 
				
			||||||
        elif model_family == "bloom":
 | 
					        elif model_family == "bloom":
 | 
				
			||||||
            from .models.bloom import load_gguf_bloom
 | 
					            from .models.bloom import load_gguf_bloom
 | 
				
			||||||
            model, tokenizer = load_gguf_bloom(loader, dtype)
 | 
					            model, tokenizer = load_gguf_bloom(loader, dtype)
 | 
				
			||||||
 | 
					        elif model_family == "falcon":
 | 
				
			||||||
 | 
					            from .models.falcon import load_gguf_falcon
 | 
				
			||||||
 | 
					            model, tokenizer = load_gguf_falcon(loader, dtype)
 | 
				
			||||||
        elif model_family == "mpt":
 | 
					        elif model_family == "mpt":
 | 
				
			||||||
            from .models.mpt import load_gguf_mpt
 | 
					            from .models.mpt import load_gguf_mpt
 | 
				
			||||||
            model, tokenizer = load_gguf_mpt(loader, dtype)
 | 
					            model, tokenizer = load_gguf_mpt(loader, dtype)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										112
									
								
								python/llm/src/bigdl/llm/transformers/gguf/models/falcon.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										112
									
								
								python/llm/src/bigdl/llm/transformers/gguf/models/falcon.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,112 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					from accelerate import init_empty_weights
 | 
				
			||||||
 | 
					from accelerate.utils import set_module_tensor_to_device
 | 
				
			||||||
 | 
					from transformers import FalconConfig, FalconForCausalLM, PreTrainedTokenizerFast
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from ..gguf import GGUFFileLoader
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def load_gguf_falcon(loader: GGUFFileLoader, dtype: torch.dtype = torch.float):
 | 
				
			||||||
 | 
					    config = loader.config
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    falcon_config = FalconConfig(
 | 
				
			||||||
 | 
					        vocab_size=len(config['tokenizer.ggml.tokens']),
 | 
				
			||||||
 | 
					        hidden_size=config['falcon.embedding_length'],
 | 
				
			||||||
 | 
					        num_hidden_layers=config['falcon.block_count'],
 | 
				
			||||||
 | 
					        num_attention_heads=config['falcon.attention.head_count'],
 | 
				
			||||||
 | 
					        num_kv_heads=config['falcon.attention.head_count_kv'],
 | 
				
			||||||
 | 
					        max_position_embeddings=config['falcon.context_length'],
 | 
				
			||||||
 | 
					        layer_norm_epsilon=config['falcon.attention.layer_norm_epsilon'],
 | 
				
			||||||
 | 
					        use_cache=True,
 | 
				
			||||||
 | 
					        bos_token_id=config['tokenizer.ggml.bos_token_id'],
 | 
				
			||||||
 | 
					        eos_token_id=config['tokenizer.ggml.eos_token_id'],
 | 
				
			||||||
 | 
					        # architectures="FalconForCausalLM",
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    ckpt = loader.tensors(dtype)
 | 
				
			||||||
 | 
					    n_head = config['falcon.attention.head_count']
 | 
				
			||||||
 | 
					    n_head_kv = config['falcon.attention.head_count_kv']
 | 
				
			||||||
 | 
					    head_dim = config['falcon.embedding_length'] // n_head
 | 
				
			||||||
 | 
					    ckpt = restore_falcon_weight(ckpt, n_head, n_head_kv, head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    state_dict = {}
 | 
				
			||||||
 | 
					    state_dict['transformer.word_embeddings.weight'] = ckpt['token_embd.weight']
 | 
				
			||||||
 | 
					    state_dict['transformer.ln_f.weight'] = ckpt['output_norm.weight']
 | 
				
			||||||
 | 
					    state_dict['transformer.ln_f.bias'] = ckpt['output_norm.bias']
 | 
				
			||||||
 | 
					    state_dict['lm_head.weight'] = ckpt['output.weight']
 | 
				
			||||||
 | 
					    for i in range(config['falcon.block_count']):
 | 
				
			||||||
 | 
					        state_dict[f'transformer.h.{i}.self_attention.query_key_value.weight'] = \
 | 
				
			||||||
 | 
					            ckpt[f'blk.{i}.attn_qkv.weight']
 | 
				
			||||||
 | 
					        state_dict[f'transformer.h.{i}.self_attention.dense.weight'] = \
 | 
				
			||||||
 | 
					            ckpt[f'blk.{i}.attn_output.weight']
 | 
				
			||||||
 | 
					        state_dict[f'transformer.h.{i}.mlp.dense_h_to_4h.weight'] = \
 | 
				
			||||||
 | 
					            ckpt[f'blk.{i}.ffn_up.weight']
 | 
				
			||||||
 | 
					        state_dict[f'transformer.h.{i}.mlp.dense_4h_to_h.weight'] = \
 | 
				
			||||||
 | 
					            ckpt[f'blk.{i}.ffn_down.weight']
 | 
				
			||||||
 | 
					        state_dict[f'transformer.h.{i}.input_layernorm.weight'] = \
 | 
				
			||||||
 | 
					            ckpt[f'blk.{i}.attn_norm.weight']
 | 
				
			||||||
 | 
					        state_dict[f'transformer.h.{i}.input_layernorm.bias'] = \
 | 
				
			||||||
 | 
					            ckpt[f'blk.{i}.attn_norm.bias']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    with init_empty_weights():
 | 
				
			||||||
 | 
					        model = FalconForCausalLM(falcon_config)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for name, weight in state_dict.items():
 | 
				
			||||||
 | 
					        set_module_tensor_to_device(model, name, "cpu", weight, dtype=dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    model = model.cpu()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    pieces, merges = loader.tokenizer_pieces()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    current_directory = os.path.dirname(os.path.abspath(__file__))
 | 
				
			||||||
 | 
					    token_file = current_directory + "/model_implement/falcon/tokenizer.json"
 | 
				
			||||||
 | 
					    import json
 | 
				
			||||||
 | 
					    with open(token_file, 'r') as file:
 | 
				
			||||||
 | 
					        data = json.load(file)
 | 
				
			||||||
 | 
					    vocab = {}
 | 
				
			||||||
 | 
					    # load and replace vocab and merges
 | 
				
			||||||
 | 
					    for i in range(len(pieces)):
 | 
				
			||||||
 | 
					        token = pieces[i].piece
 | 
				
			||||||
 | 
					        score = int(pieces[i].score)
 | 
				
			||||||
 | 
					        vocab[token] = score
 | 
				
			||||||
 | 
					    data['model']['merges'] = merges
 | 
				
			||||||
 | 
					    data['model']['vocab'] = vocab
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    with open(token_file, 'w') as file:
 | 
				
			||||||
 | 
					        json.dump(data, file, indent=4)
 | 
				
			||||||
 | 
					    tokenizer = PreTrainedTokenizerFast(tokenizer_file=token_file)
 | 
				
			||||||
 | 
					    return model, tokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def restore_falcon_weight(ckpt: dict, n_head: int, n_head_kv: int, head_dim: int):
 | 
				
			||||||
 | 
					    # see https://github.com/ggerganov/llama.cpp/blob/
 | 
				
			||||||
 | 
					    # master/convert-hf-to-gguf.py#L666
 | 
				
			||||||
 | 
					    import numpy as np
 | 
				
			||||||
 | 
					    for name, weight in ckpt.items():
 | 
				
			||||||
 | 
					        if name.endswith("attn_qkv.weight"):
 | 
				
			||||||
 | 
					            part1, part2, part3 = np.split(weight.reshape(-1, head_dim * n_head),
 | 
				
			||||||
 | 
					                                           [n_head * head_dim, (n_head + n_head_kv) * head_dim],
 | 
				
			||||||
 | 
					                                           axis=0)
 | 
				
			||||||
 | 
					            part1 = part1.reshape((n_head_kv, n_head // n_head_kv, head_dim, head_dim * n_head))
 | 
				
			||||||
 | 
					            part2 = part2.reshape((n_head_kv, 1, head_dim, head_dim * n_head))
 | 
				
			||||||
 | 
					            part3 = part3.reshape((n_head_kv, 1, head_dim, head_dim * n_head))
 | 
				
			||||||
 | 
					            data = torch.cat([part1, part2, part3], dim=1)
 | 
				
			||||||
 | 
					            ckpt[name] = data.reshape(-1, head_dim * n_head)
 | 
				
			||||||
 | 
					    return ckpt
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,160 @@
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    "version": "1.0",
 | 
				
			||||||
 | 
					    "truncation": null,
 | 
				
			||||||
 | 
					    "padding": null,
 | 
				
			||||||
 | 
					    "added_tokens": [
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "id": 0,
 | 
				
			||||||
 | 
					            "content": ">>TITLE<<",
 | 
				
			||||||
 | 
					            "single_word": false,
 | 
				
			||||||
 | 
					            "lstrip": false,
 | 
				
			||||||
 | 
					            "rstrip": false,
 | 
				
			||||||
 | 
					            "normalized": false,
 | 
				
			||||||
 | 
					            "special": true
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "id": 1,
 | 
				
			||||||
 | 
					            "content": ">>ABSTRACT<<",
 | 
				
			||||||
 | 
					            "single_word": false,
 | 
				
			||||||
 | 
					            "lstrip": false,
 | 
				
			||||||
 | 
					            "rstrip": false,
 | 
				
			||||||
 | 
					            "normalized": false,
 | 
				
			||||||
 | 
					            "special": true
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "id": 2,
 | 
				
			||||||
 | 
					            "content": ">>INTRODUCTION<<",
 | 
				
			||||||
 | 
					            "single_word": false,
 | 
				
			||||||
 | 
					            "lstrip": false,
 | 
				
			||||||
 | 
					            "rstrip": false,
 | 
				
			||||||
 | 
					            "normalized": false,
 | 
				
			||||||
 | 
					            "special": true
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "id": 3,
 | 
				
			||||||
 | 
					            "content": ">>SUMMARY<<",
 | 
				
			||||||
 | 
					            "single_word": false,
 | 
				
			||||||
 | 
					            "lstrip": false,
 | 
				
			||||||
 | 
					            "rstrip": false,
 | 
				
			||||||
 | 
					            "normalized": false,
 | 
				
			||||||
 | 
					            "special": true
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "id": 4,
 | 
				
			||||||
 | 
					            "content": ">>COMMENT<<",
 | 
				
			||||||
 | 
					            "single_word": false,
 | 
				
			||||||
 | 
					            "lstrip": false,
 | 
				
			||||||
 | 
					            "rstrip": false,
 | 
				
			||||||
 | 
					            "normalized": false,
 | 
				
			||||||
 | 
					            "special": true
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "id": 5,
 | 
				
			||||||
 | 
					            "content": ">>ANSWER<<",
 | 
				
			||||||
 | 
					            "single_word": false,
 | 
				
			||||||
 | 
					            "lstrip": false,
 | 
				
			||||||
 | 
					            "rstrip": false,
 | 
				
			||||||
 | 
					            "normalized": false,
 | 
				
			||||||
 | 
					            "special": true
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "id": 6,
 | 
				
			||||||
 | 
					            "content": ">>QUESTION<<",
 | 
				
			||||||
 | 
					            "single_word": false,
 | 
				
			||||||
 | 
					            "lstrip": false,
 | 
				
			||||||
 | 
					            "rstrip": false,
 | 
				
			||||||
 | 
					            "normalized": false,
 | 
				
			||||||
 | 
					            "special": true
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "id": 7,
 | 
				
			||||||
 | 
					            "content": ">>DOMAIN<<",
 | 
				
			||||||
 | 
					            "single_word": false,
 | 
				
			||||||
 | 
					            "lstrip": false,
 | 
				
			||||||
 | 
					            "rstrip": false,
 | 
				
			||||||
 | 
					            "normalized": false,
 | 
				
			||||||
 | 
					            "special": true
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "id": 8,
 | 
				
			||||||
 | 
					            "content": ">>PREFIX<<",
 | 
				
			||||||
 | 
					            "single_word": false,
 | 
				
			||||||
 | 
					            "lstrip": false,
 | 
				
			||||||
 | 
					            "rstrip": false,
 | 
				
			||||||
 | 
					            "normalized": false,
 | 
				
			||||||
 | 
					            "special": true
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "id": 9,
 | 
				
			||||||
 | 
					            "content": ">>SUFFIX<<",
 | 
				
			||||||
 | 
					            "single_word": false,
 | 
				
			||||||
 | 
					            "lstrip": false,
 | 
				
			||||||
 | 
					            "rstrip": false,
 | 
				
			||||||
 | 
					            "normalized": false,
 | 
				
			||||||
 | 
					            "special": true
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "id": 10,
 | 
				
			||||||
 | 
					            "content": ">>MIDDLE<<",
 | 
				
			||||||
 | 
					            "single_word": false,
 | 
				
			||||||
 | 
					            "lstrip": false,
 | 
				
			||||||
 | 
					            "rstrip": false,
 | 
				
			||||||
 | 
					            "normalized": false,
 | 
				
			||||||
 | 
					            "special": true
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					            "id": 11,
 | 
				
			||||||
 | 
					            "content": "<|endoftext|>",
 | 
				
			||||||
 | 
					            "single_word": false,
 | 
				
			||||||
 | 
					            "lstrip": false,
 | 
				
			||||||
 | 
					            "rstrip": false,
 | 
				
			||||||
 | 
					            "normalized": false,
 | 
				
			||||||
 | 
					            "special": true
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    ],
 | 
				
			||||||
 | 
					    "normalizer": null,
 | 
				
			||||||
 | 
					    "pre_tokenizer": {
 | 
				
			||||||
 | 
					        "type": "Sequence",
 | 
				
			||||||
 | 
					        "pretokenizers": [
 | 
				
			||||||
 | 
					            {
 | 
				
			||||||
 | 
					                "type": "Punctuation",
 | 
				
			||||||
 | 
					                "behavior": "Contiguous"
 | 
				
			||||||
 | 
					            },
 | 
				
			||||||
 | 
					            {
 | 
				
			||||||
 | 
					                "type": "ByteLevel",
 | 
				
			||||||
 | 
					                "add_prefix_space": false,
 | 
				
			||||||
 | 
					                "trim_offsets": true,
 | 
				
			||||||
 | 
					                "use_regex": true
 | 
				
			||||||
 | 
					            },
 | 
				
			||||||
 | 
					            {
 | 
				
			||||||
 | 
					                "type": "Digits",
 | 
				
			||||||
 | 
					                "individual_digits": false
 | 
				
			||||||
 | 
					            },
 | 
				
			||||||
 | 
					            {
 | 
				
			||||||
 | 
					                "type": "Split",
 | 
				
			||||||
 | 
					                "pattern": {
 | 
				
			||||||
 | 
					                    "Regex": "[0-9][0-9][0-9]"
 | 
				
			||||||
 | 
					                },
 | 
				
			||||||
 | 
					                "behavior": "Isolated",
 | 
				
			||||||
 | 
					                "invert": false
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					    },
 | 
				
			||||||
 | 
					    "post_processor": null,
 | 
				
			||||||
 | 
					    "decoder": {
 | 
				
			||||||
 | 
					        "type": "ByteLevel",
 | 
				
			||||||
 | 
					        "add_prefix_space": true,
 | 
				
			||||||
 | 
					        "trim_offsets": true,
 | 
				
			||||||
 | 
					        "use_regex": true
 | 
				
			||||||
 | 
					    },
 | 
				
			||||||
 | 
					    "model": {
 | 
				
			||||||
 | 
					        "type": "BPE",
 | 
				
			||||||
 | 
					        "dropout": null,
 | 
				
			||||||
 | 
					        "unk_token": null,
 | 
				
			||||||
 | 
					        "continuing_subword_prefix": null,
 | 
				
			||||||
 | 
					        "end_of_word_suffix": null,
 | 
				
			||||||
 | 
					        "fuse_unk": false,
 | 
				
			||||||
 | 
					        "vocab": null,
 | 
				
			||||||
 | 
					        "merges": null
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
		Loading…
	
		Reference in a new issue