Add Data Center GPU Flex Series to Readme (#8835)

* Add Data Center GPU Flex Series to Readme

* remove

* update starcoder
This commit is contained in:
Yang Wang 2023-08-30 02:19:09 +08:00 committed by GitHub
parent 7429ea0606
commit a386ad984e
11 changed files with 39 additions and 34 deletions

View file

@ -1,12 +1,17 @@
# BigDL-LLM Transformers INT4 Optimization for Large Language Model on Intel® Arc™ A-Series Graphics
You can use BigDL-LLM to run almost every Huggingface Transformer models with INT4 optimizations on your laptops with Intel® Arc™ A-Series Graphics. This directory contains example scripts to help you quickly get started using BigDL-LLM to run some popular open-source models in the community. Each model has its own dedicated folder, where you can find detailed instructions on how to install and run it.
# BigDL-LLM Transformers INT4 Optimization for Large Language Model on Intel GPUs
You can use BigDL-LLM to run almost every Huggingface Transformer models with INT4 optimizations on your laptops with Intel GPUs. This directory contains example scripts to help you quickly get started using BigDL-LLM to run some popular open-source models in the community. Each model has its own dedicated folder, where you can find detailed instructions on how to install and run it.
## Verified Hardware Platforms
- Intel Arc™ A-Series Graphics
- Intel Data Center GPU Flex Series
## Recommended Requirements
To apply Intel® Arc™ A-Series Graphics acceleration, therere several steps for tools installation and environment preparation.
To apply Intel GPU acceleration, therere several steps for tools installation and environment preparation.
Step 1, only Linux system is supported now, Ubuntu 22.04 is prefered.
Step 2, please refer to our [drive installation](https://dgpu-docs.intel.com/installation-guides/index.html#intel-arc-gpus) for general purpose GPU capabilities.
Step 2, please refer to our [drive installation](https://dgpu-docs.intel.com/driver/installation.html) for general purpose GPU capabilities.
Step 3, you also need to download and install [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html). OneMKL and DPC++ compiler are needed, others are optional.
> **Note**: IPEX 2.0.110+xpu requires Intel® oneAPI Base Toolkit's version >= 2023.2.0.

View file

@ -1,11 +1,11 @@
# Baichuan
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Baichuan models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [baichuan-inc/Baichuan-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan-13B-Chat) as a reference Baichuan model.
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Baichuan models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [baichuan-inc/Baichuan-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan-13B-Chat) as a reference Baichuan model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Baichuan model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
In the example [generate.py](./generate.py), we show a basic use case for a Baichuan model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash

View file

@ -1,12 +1,12 @@
# ChatGLM2
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on ChatGLM2 models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b) as a reference ChatGLM2 model.
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on ChatGLM2 models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b) as a reference ChatGLM2 model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash

View file

@ -1,12 +1,12 @@
# Falcon
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Falcon models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) as a reference Falcon model.
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Falcon models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) as a reference Falcon model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Falcon model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
In the example [generate.py](./generate.py), we show a basic use case for a Falcon model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash

View file

@ -1,11 +1,11 @@
# InternLM
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on InternLM models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [internlm/internlm-chat-7b-8k](https://huggingface.co/internlm/internlm-chat-7b-8k) as a reference InternLM model.
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on InternLM models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [internlm/internlm-chat-7b-8k](https://huggingface.co/internlm/internlm-chat-7b-8k) as a reference InternLM model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a InternLM model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
In the example [generate.py](./generate.py), we show a basic use case for a InternLM model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash

View file

@ -1,11 +1,11 @@
# Llama2
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Llama2 models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) and [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) as reference Llama2 models.
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Llama2 models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) and [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) as reference Llama2 models.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Llama2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
In the example [generate.py](./generate.py), we show a basic use case for a Llama2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash

View file

@ -1,11 +1,11 @@
# MPT
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Llama2 models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat) as a reference MPT model.
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Llama2 models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat) as a reference MPT model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for an MPT model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
In the example [generate.py](./generate.py), we show a basic use case for an MPT model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash

View file

@ -1,11 +1,11 @@
# Qwen
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Qwen models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) as a reference Qwen model.
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Qwen models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) as a reference Qwen model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Qwen model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
In the example [generate.py](./generate.py), we show a basic use case for a Qwen model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash

View file

@ -1,11 +1,11 @@
# StarCoder
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on StarCoder models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) as a reference StarCoder model.
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on StarCoder models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) as a reference StarCoder model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for an StarCoder model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
In the example [generate.py](./generate.py), we show a basic use case for an StarCoder model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash

View file

@ -1,13 +1,13 @@
# Voice Assistant
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper and Llama2 models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the following models:
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper and Llama2 models on [Intel GPUs](../README.md). For illustration purposes, we utilize the following models:
- [openai/whisper-small](https://huggingface.co/openai/whisper-small) and [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) as reference whisper models.
- [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) and [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) as reference Llama2 models.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, then use the recoginzed text as the input for Llama2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
In the example [generate.py](./generate.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, then use the recoginzed text as the input for Llama2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash

View file

@ -1,12 +1,12 @@
# Whisper
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) as a reference Whisper model.
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) as a reference Whisper model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Recognize Tokens using `generate()` API
In the example [recognize.py](./recognize.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
In the example [recognize.py](./recognize.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage environment:
```bash