fix arc ut test (#9736)
This commit is contained in:
parent
f0f9d45eac
commit
a2e668a61d
3 changed files with 186 additions and 212 deletions
|
|
@ -1,182 +0,0 @@
|
||||||
#
|
|
||||||
# Copyright 2016 The BigDL Authors.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
import os
|
|
||||||
import pytest
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from transformers import LlamaTokenizer, AutoTokenizer
|
|
||||||
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
|
|
||||||
|
|
||||||
|
|
||||||
device = os.environ['DEVICE']
|
|
||||||
print(f'Running on {device}')
|
|
||||||
if device == 'xpu':
|
|
||||||
import intel_extension_for_pytorch as ipex
|
|
||||||
|
|
||||||
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
|
||||||
|
|
||||||
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
|
|
||||||
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
|
|
||||||
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH'))
|
|
||||||
])
|
|
||||||
def test_optimize_model(Model, Tokenizer, model_path):
|
|
||||||
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
||||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
|
||||||
|
|
||||||
model = Model.from_pretrained(model_path,
|
|
||||||
load_in_4bit=True,
|
|
||||||
optimize_model=False,
|
|
||||||
trust_remote_code=True)
|
|
||||||
model = model.to(device)
|
|
||||||
logits_base_model = (model(input_ids)).logits
|
|
||||||
model.to('cpu') # deallocate gpu memory
|
|
||||||
|
|
||||||
model = Model.from_pretrained(model_path,
|
|
||||||
load_in_4bit=True,
|
|
||||||
optimize_model=True,
|
|
||||||
trust_remote_code=True)
|
|
||||||
model = model.to(device)
|
|
||||||
logits_optimized_model = (model(input_ids)).logits
|
|
||||||
model.to('cpu')
|
|
||||||
|
|
||||||
diff = abs(logits_base_model - logits_optimized_model).flatten()
|
|
||||||
|
|
||||||
assert any(diff) is False
|
|
||||||
|
|
||||||
class Test_Optimize_Gpu_Model:
|
|
||||||
def setup(self):
|
|
||||||
|
|
||||||
self.layer_outputs = []
|
|
||||||
self.pre_layer_outputs = []
|
|
||||||
|
|
||||||
def run_optimize_gpu_model(self, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound):
|
|
||||||
def forward_hook(module, input, output, layer_name):
|
|
||||||
self.layer_outputs.append(output)
|
|
||||||
|
|
||||||
def pre_forward_hook(module, input, output, layer_name):
|
|
||||||
self.pre_layer_outputs.append(output)
|
|
||||||
|
|
||||||
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
||||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
|
||||||
|
|
||||||
model = Model.from_pretrained(model_path,
|
|
||||||
load_in_4bit=True,
|
|
||||||
optimize_model=False,
|
|
||||||
trust_remote_code=True)
|
|
||||||
model = model.to(device)
|
|
||||||
|
|
||||||
for layer_name, layer_module in model.named_modules():
|
|
||||||
if layer_name == layer_norm:
|
|
||||||
layer_module.register_forward_hook(
|
|
||||||
lambda module, input, output, layer_name=layer_name: pre_forward_hook(module, input,
|
|
||||||
output, layer_name))
|
|
||||||
if layer_name == self_attn:
|
|
||||||
layer_module.register_forward_hook(
|
|
||||||
lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
|
|
||||||
output, layer_name))
|
|
||||||
logits_base_model = (model(input_ids)).logits
|
|
||||||
# the list `layer_output` has only one element.
|
|
||||||
layer_tensor = self.layer_outputs.pop()
|
|
||||||
model.to('cpu')
|
|
||||||
|
|
||||||
opt_model = Model.from_pretrained(model_path,
|
|
||||||
load_in_4bit=True,
|
|
||||||
optimize_model=True,
|
|
||||||
trust_remote_code=True)
|
|
||||||
opt_model = opt_model.to(device)
|
|
||||||
|
|
||||||
|
|
||||||
def replace_forward_hook(module, input, output, layer_name):
|
|
||||||
output = self.pre_layer_outputs[0]
|
|
||||||
return output
|
|
||||||
|
|
||||||
for layer_name, layer_module in opt_model.named_modules():
|
|
||||||
if layer_name == layer_norm:
|
|
||||||
layer_module.register_forward_hook(
|
|
||||||
lambda module, input, output, layer_name=layer_name: replace_forward_hook(module, input,
|
|
||||||
output, layer_name))
|
|
||||||
if layer_name == self_attn:
|
|
||||||
layer_module.register_forward_hook(
|
|
||||||
lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
|
|
||||||
output, layer_name))
|
|
||||||
logits_optimized_model = (opt_model(input_ids)).logits
|
|
||||||
# the list `layer_output` has only one element.
|
|
||||||
opt_layer_tensor = self.layer_outputs[0]
|
|
||||||
opt_model.to('cpu')
|
|
||||||
|
|
||||||
attn_output_diff = []
|
|
||||||
for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
|
|
||||||
if t1 is not None and t2 is not None:
|
|
||||||
if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
|
|
||||||
# 'attn_output' is of type torch.Tensor.
|
|
||||||
attn_output_diff.append(t1 - t2)
|
|
||||||
else:
|
|
||||||
# 'past_key_value'is of type tuple as default.
|
|
||||||
for i, (t3, t4) in enumerate(zip(t1, t2)):
|
|
||||||
if model.config.architectures[0] == "ChatGLMModel" and \
|
|
||||||
hasattr(model.config, 'padded_vocab_size') and \
|
|
||||||
model.config.padded_vocab_size == 65024:
|
|
||||||
# chatglm2's past_key_value is expanded 16x for some speedup.
|
|
||||||
# We need to narrow it here.
|
|
||||||
t4 = t4[:, :, 15:17, :]
|
|
||||||
attn_output_diff.append(t3 - t4)
|
|
||||||
|
|
||||||
max_diff_tensor = [torch.max(item).item() for item in attn_output_diff]
|
|
||||||
print(max_diff_tensor)
|
|
||||||
assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
|
|
||||||
|
|
||||||
|
|
||||||
def test_falcon_gpu_model(self):
|
|
||||||
|
|
||||||
Model = AutoModelForCausalLM
|
|
||||||
Tokenizer = AutoTokenizer
|
|
||||||
model_path = os.environ.get('FALCON_7B_ORIGIN_PATH')
|
|
||||||
# currently only compare the output of the last self-attention layer.
|
|
||||||
layer_norm = "transformer.h.31.input_layernorm"
|
|
||||||
self_attn = "transformer.h.31.self_attention"
|
|
||||||
lower_bound = 0
|
|
||||||
|
|
||||||
self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
|
||||||
|
|
||||||
|
|
||||||
def test_llama_gpu_model(self):
|
|
||||||
|
|
||||||
Model = AutoModelForCausalLM
|
|
||||||
Tokenizer = AutoTokenizer
|
|
||||||
model_path = os.environ.get('LLAMA2_7B_ORIGIN_PATH')
|
|
||||||
# currently only compare the output of the last self-attention layer.
|
|
||||||
layer_norm = "model.layers.31.input_layernorm"
|
|
||||||
self_attn = "model.layers.31.self_attn"
|
|
||||||
lower_bound = 5e-2
|
|
||||||
|
|
||||||
self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
|
||||||
|
|
||||||
def test_chatglm2_gpu_model(self):
|
|
||||||
|
|
||||||
Model = AutoModel
|
|
||||||
Tokenizer = AutoTokenizer
|
|
||||||
model_path = os.environ.get('CHATGLM2_6B_ORIGIN_PATH')
|
|
||||||
# currently only need to compare the output of one self-attention layer.
|
|
||||||
layer_norm = "transformer.encoder.layers.27.input_layernorm"
|
|
||||||
self_attn = "transformer.encoder.layers.27.self_attention"
|
|
||||||
lower_bound = 5e-5
|
|
||||||
|
|
||||||
self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
pytest.main([__file__])
|
|
||||||
|
|
@ -18,6 +18,7 @@
|
||||||
import os, time
|
import os, time
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
|
import torch
|
||||||
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel, AutoModelForSpeechSeq2Seq
|
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel, AutoModelForSpeechSeq2Seq
|
||||||
from transformers import LlamaTokenizer, AutoTokenizer
|
from transformers import LlamaTokenizer, AutoTokenizer
|
||||||
|
|
||||||
|
|
@ -36,6 +37,7 @@ if device == 'xpu':
|
||||||
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
|
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
|
||||||
])
|
])
|
||||||
def test_completion(Model, Tokenizer, model_path, prompt, answer):
|
def test_completion(Model, Tokenizer, model_path, prompt, answer):
|
||||||
|
with torch.inference_mode():
|
||||||
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
model = Model.from_pretrained(model_path,
|
model = Model.from_pretrained(model_path,
|
||||||
load_in_4bit=True,
|
load_in_4bit=True,
|
||||||
|
|
@ -50,24 +52,177 @@ def test_completion(Model, Tokenizer, model_path, prompt, answer):
|
||||||
|
|
||||||
assert answer in output_str
|
assert answer in output_str
|
||||||
|
|
||||||
#def test_transformers_auto_model_for_speech_seq2seq_int4():
|
def test_transformers_auto_model_for_speech_seq2seq_int4():
|
||||||
# from transformers import WhisperProcessor
|
with torch.inference_mode():
|
||||||
# from datasets import load_from_disk
|
from transformers import WhisperProcessor
|
||||||
# model_path = os.environ.get('WHISPER_TINY_ORIGIN_PATH')
|
from datasets import load_from_disk
|
||||||
# dataset_path = os.environ.get('SPEECH_DATASET_PATH')
|
model_path = os.environ.get('WHISPER_TINY_ORIGIN_PATH')
|
||||||
# processor = WhisperProcessor.from_pretrained(model_path)
|
dataset_path = os.environ.get('SPEECH_DATASET_PATH')
|
||||||
# ds = load_from_disk(dataset_path)
|
processor = WhisperProcessor.from_pretrained(model_path)
|
||||||
# sample = ds[0]["audio"]
|
ds = load_from_disk(dataset_path)
|
||||||
# input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
sample = ds[0]["audio"]
|
||||||
# input_features = input_features.to(device)
|
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
||||||
# model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True, optimize_model=True)
|
input_features = input_features.to(device)
|
||||||
# model = model.to(device)
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True, optimize_model=True)
|
||||||
# predicted_ids = model.generate(input_features)
|
model = model.to(device)
|
||||||
# # decode token ids to text
|
predicted_ids = model.generate(input_features)
|
||||||
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
# decode token ids to text
|
||||||
# model.to('cpu')
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
||||||
# print('Output:', transcription)
|
model.to('cpu')
|
||||||
# assert 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0]
|
print('Output:', transcription)
|
||||||
|
assert 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0]
|
||||||
|
|
||||||
|
|
||||||
|
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
||||||
|
|
||||||
|
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
|
||||||
|
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
|
||||||
|
(AutoModelForCausalLM, AutoTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH'))
|
||||||
|
])
|
||||||
|
def test_optimize_model(Model, Tokenizer, model_path):
|
||||||
|
with torch.inference_mode():
|
||||||
|
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
||||||
|
|
||||||
|
model = Model.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
optimize_model=False,
|
||||||
|
trust_remote_code=True)
|
||||||
|
model = model.to(device)
|
||||||
|
logits_base_model = (model(input_ids)).logits
|
||||||
|
model.to('cpu') # deallocate gpu memory
|
||||||
|
|
||||||
|
model = Model.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
optimize_model=True,
|
||||||
|
trust_remote_code=True)
|
||||||
|
model = model.to(device)
|
||||||
|
logits_optimized_model = (model(input_ids)).logits
|
||||||
|
model.to('cpu')
|
||||||
|
|
||||||
|
assert all(torch.isclose(logits_optimized_model, logits_base_model).tolist())
|
||||||
|
|
||||||
|
class Test_Optimize_Gpu_Model:
|
||||||
|
def setup(self):
|
||||||
|
|
||||||
|
self.layer_outputs = []
|
||||||
|
self.pre_layer_outputs = []
|
||||||
|
|
||||||
|
def run_optimize_gpu_model(self, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound):
|
||||||
|
with torch.inference_mode():
|
||||||
|
def forward_hook(module, input, output, layer_name):
|
||||||
|
self.layer_outputs.append(output)
|
||||||
|
|
||||||
|
def pre_forward_hook(module, input, output, layer_name):
|
||||||
|
self.pre_layer_outputs.append(output)
|
||||||
|
|
||||||
|
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
||||||
|
|
||||||
|
model = Model.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
optimize_model=False,
|
||||||
|
trust_remote_code=True)
|
||||||
|
model = model.to(device)
|
||||||
|
|
||||||
|
for layer_name, layer_module in model.named_modules():
|
||||||
|
if layer_name == layer_norm:
|
||||||
|
layer_module.register_forward_hook(
|
||||||
|
lambda module, input, output, layer_name=layer_name: pre_forward_hook(module, input,
|
||||||
|
output, layer_name))
|
||||||
|
if layer_name == self_attn:
|
||||||
|
layer_module.register_forward_hook(
|
||||||
|
lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
|
||||||
|
output, layer_name))
|
||||||
|
logits_base_model = (model(input_ids)).logits
|
||||||
|
# the list `layer_output` has only one element.
|
||||||
|
layer_tensor = self.layer_outputs.pop()
|
||||||
|
model.to('cpu')
|
||||||
|
|
||||||
|
opt_model = Model.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
optimize_model=True,
|
||||||
|
trust_remote_code=True)
|
||||||
|
opt_model = opt_model.to(device)
|
||||||
|
|
||||||
|
|
||||||
|
def replace_forward_hook(module, input, output, layer_name):
|
||||||
|
output = self.pre_layer_outputs[0]
|
||||||
|
return output
|
||||||
|
|
||||||
|
for layer_name, layer_module in opt_model.named_modules():
|
||||||
|
if layer_name == layer_norm:
|
||||||
|
layer_module.register_forward_hook(
|
||||||
|
lambda module, input, output, layer_name=layer_name: replace_forward_hook(module, input,
|
||||||
|
output, layer_name))
|
||||||
|
if layer_name == self_attn:
|
||||||
|
layer_module.register_forward_hook(
|
||||||
|
lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
|
||||||
|
output, layer_name))
|
||||||
|
logits_optimized_model = (opt_model(input_ids)).logits
|
||||||
|
# the list `layer_output` has only one element.
|
||||||
|
opt_layer_tensor = self.layer_outputs[0]
|
||||||
|
opt_model.to('cpu')
|
||||||
|
|
||||||
|
attn_output_diff = []
|
||||||
|
for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
|
||||||
|
if t1 is not None and t2 is not None:
|
||||||
|
if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
|
||||||
|
# 'attn_output' is of type torch.Tensor.
|
||||||
|
attn_output_diff.append(t1 - t2)
|
||||||
|
else:
|
||||||
|
# 'past_key_value'is of type tuple as default.
|
||||||
|
for i, (t3, t4) in enumerate(zip(t1, t2)):
|
||||||
|
if model.config.architectures[0] == "ChatGLMModel" and \
|
||||||
|
hasattr(model.config, 'padded_vocab_size') and \
|
||||||
|
model.config.padded_vocab_size == 65024:
|
||||||
|
# chatglm2's past_key_value is expanded 16x for some speedup.
|
||||||
|
# We need to narrow it here.
|
||||||
|
t4 = t4[:, :, 15:17, :]
|
||||||
|
attn_output_diff.append(t3 - t4)
|
||||||
|
|
||||||
|
max_diff_tensor = [torch.max(item).item() for item in attn_output_diff]
|
||||||
|
print(max_diff_tensor)
|
||||||
|
assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
|
||||||
|
|
||||||
|
|
||||||
|
def test_falcon_gpu_model(self):
|
||||||
|
|
||||||
|
Model = AutoModelForCausalLM
|
||||||
|
Tokenizer = AutoTokenizer
|
||||||
|
model_path = os.environ.get('FALCON_7B_ORIGIN_PATH')
|
||||||
|
# currently only compare the output of the last self-attention layer.
|
||||||
|
layer_norm = "transformer.h.31.input_layernorm"
|
||||||
|
self_attn = "transformer.h.31.self_attention"
|
||||||
|
lower_bound = 0
|
||||||
|
|
||||||
|
self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
||||||
|
|
||||||
|
|
||||||
|
def test_llama_gpu_model(self):
|
||||||
|
|
||||||
|
Model = AutoModelForCausalLM
|
||||||
|
Tokenizer = AutoTokenizer
|
||||||
|
model_path = os.environ.get('LLAMA2_7B_ORIGIN_PATH')
|
||||||
|
# currently only compare the output of the last self-attention layer.
|
||||||
|
layer_norm = "model.layers.31.input_layernorm"
|
||||||
|
self_attn = "model.layers.31.self_attn"
|
||||||
|
lower_bound = 5e-2
|
||||||
|
|
||||||
|
self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
||||||
|
|
||||||
|
def test_chatglm2_gpu_model(self):
|
||||||
|
|
||||||
|
Model = AutoModel
|
||||||
|
Tokenizer = AutoTokenizer
|
||||||
|
model_path = os.environ.get('CHATGLM2_6B_ORIGIN_PATH')
|
||||||
|
# currently only need to compare the output of one self-attention layer.
|
||||||
|
layer_norm = "transformer.encoder.layers.27.input_layernorm"
|
||||||
|
self_attn = "transformer.encoder.layers.27.self_attention"
|
||||||
|
lower_bound = 1e-3
|
||||||
|
|
||||||
|
self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
pytest.main([__file__])
|
pytest.main([__file__])
|
||||||
|
|
|
||||||
|
|
@ -5,6 +5,7 @@ export LLM_HOME=${ANALYTICS_ZOO_ROOT}/python/llm/src
|
||||||
export LLM_INFERENCE_TEST_DIR=${ANALYTICS_ZOO_ROOT}/python/llm/test/inference_gpu
|
export LLM_INFERENCE_TEST_DIR=${ANALYTICS_ZOO_ROOT}/python/llm/test/inference_gpu
|
||||||
|
|
||||||
export USE_XETLA=OFF
|
export USE_XETLA=OFF
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
export DEVICE='xpu'
|
export DEVICE='xpu'
|
||||||
|
|
||||||
set -e
|
set -e
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue