fix arc ut test (#9736)
This commit is contained in:
		
							parent
							
								
									f0f9d45eac
								
							
						
					
					
						commit
						a2e668a61d
					
				
					 3 changed files with 186 additions and 212 deletions
				
			
		| 
						 | 
				
			
			@ -1,182 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import pytest
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from transformers import LlamaTokenizer, AutoTokenizer
 | 
			
		||||
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
device = os.environ['DEVICE']
 | 
			
		||||
print(f'Running on {device}')
 | 
			
		||||
if device == 'xpu':
 | 
			
		||||
    import intel_extension_for_pytorch as ipex
 | 
			
		||||
 | 
			
		||||
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
 | 
			
		||||
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
 | 
			
		||||
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH'))
 | 
			
		||||
    ])
 | 
			
		||||
def test_optimize_model(Model, Tokenizer, model_path):
 | 
			
		||||
    tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
 | 
			
		||||
 | 
			
		||||
    model = Model.from_pretrained(model_path,
 | 
			
		||||
                                load_in_4bit=True,
 | 
			
		||||
                                optimize_model=False,
 | 
			
		||||
                                trust_remote_code=True)
 | 
			
		||||
    model = model.to(device)
 | 
			
		||||
    logits_base_model = (model(input_ids)).logits
 | 
			
		||||
    model.to('cpu')  # deallocate gpu memory
 | 
			
		||||
 | 
			
		||||
    model = Model.from_pretrained(model_path,
 | 
			
		||||
                                load_in_4bit=True,
 | 
			
		||||
                                optimize_model=True,
 | 
			
		||||
                                trust_remote_code=True)
 | 
			
		||||
    model = model.to(device)
 | 
			
		||||
    logits_optimized_model = (model(input_ids)).logits
 | 
			
		||||
    model.to('cpu')
 | 
			
		||||
    
 | 
			
		||||
    diff = abs(logits_base_model - logits_optimized_model).flatten()
 | 
			
		||||
 | 
			
		||||
    assert any(diff) is False
 | 
			
		||||
 | 
			
		||||
class Test_Optimize_Gpu_Model:
 | 
			
		||||
    def setup(self):
 | 
			
		||||
 | 
			
		||||
        self.layer_outputs = []
 | 
			
		||||
        self.pre_layer_outputs = []
 | 
			
		||||
 | 
			
		||||
    def run_optimize_gpu_model(self, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound):
 | 
			
		||||
        def forward_hook(module, input, output, layer_name):
 | 
			
		||||
            self.layer_outputs.append(output)
 | 
			
		||||
 | 
			
		||||
        def pre_forward_hook(module, input, output, layer_name):
 | 
			
		||||
            self.pre_layer_outputs.append(output)
 | 
			
		||||
 | 
			
		||||
        tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
 | 
			
		||||
 | 
			
		||||
        model = Model.from_pretrained(model_path,
 | 
			
		||||
                                      load_in_4bit=True,
 | 
			
		||||
                                      optimize_model=False,
 | 
			
		||||
                                      trust_remote_code=True)
 | 
			
		||||
        model = model.to(device)
 | 
			
		||||
 | 
			
		||||
        for layer_name, layer_module in model.named_modules():
 | 
			
		||||
            if layer_name == layer_norm:
 | 
			
		||||
                layer_module.register_forward_hook(
 | 
			
		||||
                    lambda module, input, output, layer_name=layer_name: pre_forward_hook(module, input,
 | 
			
		||||
                                                                                          output, layer_name))
 | 
			
		||||
            if layer_name == self_attn:
 | 
			
		||||
                layer_module.register_forward_hook(
 | 
			
		||||
                    lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
 | 
			
		||||
                                                                                      output, layer_name))
 | 
			
		||||
        logits_base_model = (model(input_ids)).logits
 | 
			
		||||
        # the list `layer_output` has only one element.
 | 
			
		||||
        layer_tensor = self.layer_outputs.pop()
 | 
			
		||||
        model.to('cpu')
 | 
			
		||||
 | 
			
		||||
        opt_model = Model.from_pretrained(model_path,
 | 
			
		||||
                                          load_in_4bit=True,
 | 
			
		||||
                                          optimize_model=True,
 | 
			
		||||
                                          trust_remote_code=True)
 | 
			
		||||
        opt_model = opt_model.to(device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        def replace_forward_hook(module, input, output, layer_name):
 | 
			
		||||
            output = self.pre_layer_outputs[0]
 | 
			
		||||
            return output
 | 
			
		||||
 | 
			
		||||
        for layer_name, layer_module in opt_model.named_modules():
 | 
			
		||||
            if layer_name == layer_norm:
 | 
			
		||||
                layer_module.register_forward_hook(
 | 
			
		||||
                    lambda module, input, output, layer_name=layer_name: replace_forward_hook(module, input,
 | 
			
		||||
                                                                                              output, layer_name))
 | 
			
		||||
            if layer_name == self_attn:
 | 
			
		||||
                layer_module.register_forward_hook(
 | 
			
		||||
                    lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
 | 
			
		||||
                                                                                      output, layer_name))
 | 
			
		||||
        logits_optimized_model = (opt_model(input_ids)).logits
 | 
			
		||||
        # the list `layer_output` has only one element.
 | 
			
		||||
        opt_layer_tensor = self.layer_outputs[0]
 | 
			
		||||
        opt_model.to('cpu')
 | 
			
		||||
 | 
			
		||||
        attn_output_diff = []
 | 
			
		||||
        for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
 | 
			
		||||
            if t1 is not None and t2 is not None:
 | 
			
		||||
                if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
 | 
			
		||||
                    # 'attn_output' is of type torch.Tensor.
 | 
			
		||||
                    attn_output_diff.append(t1 - t2)
 | 
			
		||||
                else:
 | 
			
		||||
                    # 'past_key_value'is of type tuple as default.
 | 
			
		||||
                    for i, (t3, t4) in enumerate(zip(t1, t2)):
 | 
			
		||||
                        if model.config.architectures[0] == "ChatGLMModel" and \
 | 
			
		||||
                                hasattr(model.config, 'padded_vocab_size') and \
 | 
			
		||||
                                model.config.padded_vocab_size == 65024:
 | 
			
		||||
                            # chatglm2's past_key_value is expanded 16x for some speedup.
 | 
			
		||||
                            # We need to narrow it here.
 | 
			
		||||
                            t4 = t4[:, :, 15:17, :]
 | 
			
		||||
                        attn_output_diff.append(t3 - t4)
 | 
			
		||||
 | 
			
		||||
        max_diff_tensor = [torch.max(item).item() for item in attn_output_diff]
 | 
			
		||||
        print(max_diff_tensor)
 | 
			
		||||
        assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def test_falcon_gpu_model(self):
 | 
			
		||||
 | 
			
		||||
        Model = AutoModelForCausalLM
 | 
			
		||||
        Tokenizer = AutoTokenizer
 | 
			
		||||
        model_path = os.environ.get('FALCON_7B_ORIGIN_PATH')
 | 
			
		||||
        # currently only compare the output of the last self-attention layer.
 | 
			
		||||
        layer_norm = "transformer.h.31.input_layernorm"
 | 
			
		||||
        self_attn = "transformer.h.31.self_attention"
 | 
			
		||||
        lower_bound = 0
 | 
			
		||||
 | 
			
		||||
        self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def test_llama_gpu_model(self):
 | 
			
		||||
 | 
			
		||||
        Model = AutoModelForCausalLM
 | 
			
		||||
        Tokenizer = AutoTokenizer
 | 
			
		||||
        model_path = os.environ.get('LLAMA2_7B_ORIGIN_PATH')
 | 
			
		||||
        # currently only compare the output of the last self-attention layer.
 | 
			
		||||
        layer_norm = "model.layers.31.input_layernorm"
 | 
			
		||||
        self_attn = "model.layers.31.self_attn"
 | 
			
		||||
        lower_bound = 5e-2
 | 
			
		||||
 | 
			
		||||
        self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
 | 
			
		||||
 | 
			
		||||
    def test_chatglm2_gpu_model(self):
 | 
			
		||||
 | 
			
		||||
        Model = AutoModel
 | 
			
		||||
        Tokenizer = AutoTokenizer
 | 
			
		||||
        model_path = os.environ.get('CHATGLM2_6B_ORIGIN_PATH')
 | 
			
		||||
        # currently only need to compare the output of one self-attention layer.
 | 
			
		||||
        layer_norm = "transformer.encoder.layers.27.input_layernorm"
 | 
			
		||||
        self_attn = "transformer.encoder.layers.27.self_attention"
 | 
			
		||||
        lower_bound = 5e-5
 | 
			
		||||
 | 
			
		||||
        self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    pytest.main([__file__])
 | 
			
		||||
| 
						 | 
				
			
			@ -18,6 +18,7 @@
 | 
			
		|||
import os, time
 | 
			
		||||
import pytest
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel, AutoModelForSpeechSeq2Seq
 | 
			
		||||
from transformers import LlamaTokenizer, AutoTokenizer
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -36,38 +37,192 @@ if device == 'xpu':
 | 
			
		|||
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
 | 
			
		||||
    ])
 | 
			
		||||
def test_completion(Model, Tokenizer, model_path, prompt, answer):
 | 
			
		||||
    tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    model = Model.from_pretrained(model_path,
 | 
			
		||||
                                load_in_4bit=True,
 | 
			
		||||
                                optimize_model=True,
 | 
			
		||||
                                trust_remote_code=True)
 | 
			
		||||
    model = model.to(device)
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        model = Model.from_pretrained(model_path,
 | 
			
		||||
                                    load_in_4bit=True,
 | 
			
		||||
                                    optimize_model=True,
 | 
			
		||||
                                    trust_remote_code=True)
 | 
			
		||||
        model = model.to(device)
 | 
			
		||||
 | 
			
		||||
    input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
 | 
			
		||||
    output = model.generate(input_ids, max_new_tokens=32)
 | 
			
		||||
    model.to('cpu')   # deallocate gpu memory
 | 
			
		||||
    output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
			
		||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
 | 
			
		||||
        output = model.generate(input_ids, max_new_tokens=32)
 | 
			
		||||
        model.to('cpu')   # deallocate gpu memory
 | 
			
		||||
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
			
		||||
 | 
			
		||||
        assert answer in output_str
 | 
			
		||||
 | 
			
		||||
def test_transformers_auto_model_for_speech_seq2seq_int4():
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        from transformers import WhisperProcessor
 | 
			
		||||
        from datasets import load_from_disk
 | 
			
		||||
        model_path = os.environ.get('WHISPER_TINY_ORIGIN_PATH')
 | 
			
		||||
        dataset_path = os.environ.get('SPEECH_DATASET_PATH')
 | 
			
		||||
        processor = WhisperProcessor.from_pretrained(model_path)
 | 
			
		||||
        ds = load_from_disk(dataset_path)
 | 
			
		||||
        sample = ds[0]["audio"]
 | 
			
		||||
        input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
 | 
			
		||||
        input_features = input_features.to(device)
 | 
			
		||||
        model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True, optimize_model=True)
 | 
			
		||||
        model = model.to(device)
 | 
			
		||||
        predicted_ids = model.generate(input_features)
 | 
			
		||||
        # decode token ids to text
 | 
			
		||||
        transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
 | 
			
		||||
        model.to('cpu')
 | 
			
		||||
        print('Output:', transcription)
 | 
			
		||||
        assert 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize('Model, Tokenizer, model_path',[
 | 
			
		||||
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')),
 | 
			
		||||
    (AutoModelForCausalLM, AutoTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH'))
 | 
			
		||||
    ])
 | 
			
		||||
def test_optimize_model(Model, Tokenizer, model_path):
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
 | 
			
		||||
 | 
			
		||||
        model = Model.from_pretrained(model_path,
 | 
			
		||||
                                    load_in_4bit=True,
 | 
			
		||||
                                    optimize_model=False,
 | 
			
		||||
                                    trust_remote_code=True)
 | 
			
		||||
        model = model.to(device)
 | 
			
		||||
        logits_base_model = (model(input_ids)).logits
 | 
			
		||||
        model.to('cpu')  # deallocate gpu memory
 | 
			
		||||
 | 
			
		||||
        model = Model.from_pretrained(model_path,
 | 
			
		||||
                                    load_in_4bit=True,
 | 
			
		||||
                                    optimize_model=True,
 | 
			
		||||
                                    trust_remote_code=True)
 | 
			
		||||
        model = model.to(device)
 | 
			
		||||
        logits_optimized_model = (model(input_ids)).logits
 | 
			
		||||
        model.to('cpu')
 | 
			
		||||
 | 
			
		||||
        assert all(torch.isclose(logits_optimized_model, logits_base_model).tolist())
 | 
			
		||||
 | 
			
		||||
class Test_Optimize_Gpu_Model:
 | 
			
		||||
    def setup(self):
 | 
			
		||||
 | 
			
		||||
        self.layer_outputs = []
 | 
			
		||||
        self.pre_layer_outputs = []
 | 
			
		||||
 | 
			
		||||
    def run_optimize_gpu_model(self, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound):
 | 
			
		||||
        with torch.inference_mode():
 | 
			
		||||
            def forward_hook(module, input, output, layer_name):
 | 
			
		||||
                self.layer_outputs.append(output)
 | 
			
		||||
 | 
			
		||||
            def pre_forward_hook(module, input, output, layer_name):
 | 
			
		||||
                self.pre_layer_outputs.append(output)
 | 
			
		||||
 | 
			
		||||
            tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
            input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
 | 
			
		||||
 | 
			
		||||
            model = Model.from_pretrained(model_path,
 | 
			
		||||
                                        load_in_4bit=True,
 | 
			
		||||
                                        optimize_model=False,
 | 
			
		||||
                                        trust_remote_code=True)
 | 
			
		||||
            model = model.to(device)
 | 
			
		||||
 | 
			
		||||
            for layer_name, layer_module in model.named_modules():
 | 
			
		||||
                if layer_name == layer_norm:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
                        lambda module, input, output, layer_name=layer_name: pre_forward_hook(module, input,
 | 
			
		||||
                                                                                            output, layer_name))
 | 
			
		||||
                if layer_name == self_attn:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
                        lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
 | 
			
		||||
                                                                                        output, layer_name))
 | 
			
		||||
            logits_base_model = (model(input_ids)).logits
 | 
			
		||||
            # the list `layer_output` has only one element.
 | 
			
		||||
            layer_tensor = self.layer_outputs.pop()
 | 
			
		||||
            model.to('cpu')
 | 
			
		||||
 | 
			
		||||
            opt_model = Model.from_pretrained(model_path,
 | 
			
		||||
                                            load_in_4bit=True,
 | 
			
		||||
                                            optimize_model=True,
 | 
			
		||||
                                            trust_remote_code=True)
 | 
			
		||||
            opt_model = opt_model.to(device)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
            def replace_forward_hook(module, input, output, layer_name):
 | 
			
		||||
                output = self.pre_layer_outputs[0]
 | 
			
		||||
                return output
 | 
			
		||||
 | 
			
		||||
            for layer_name, layer_module in opt_model.named_modules():
 | 
			
		||||
                if layer_name == layer_norm:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
                        lambda module, input, output, layer_name=layer_name: replace_forward_hook(module, input,
 | 
			
		||||
                                                                                                output, layer_name))
 | 
			
		||||
                if layer_name == self_attn:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
                        lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
 | 
			
		||||
                                                                                        output, layer_name))
 | 
			
		||||
            logits_optimized_model = (opt_model(input_ids)).logits
 | 
			
		||||
            # the list `layer_output` has only one element.
 | 
			
		||||
            opt_layer_tensor = self.layer_outputs[0]
 | 
			
		||||
            opt_model.to('cpu')
 | 
			
		||||
 | 
			
		||||
            attn_output_diff = []
 | 
			
		||||
            for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
 | 
			
		||||
                if t1 is not None and t2 is not None:
 | 
			
		||||
                    if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
 | 
			
		||||
                        # 'attn_output' is of type torch.Tensor.
 | 
			
		||||
                        attn_output_diff.append(t1 - t2)
 | 
			
		||||
                    else:
 | 
			
		||||
                        # 'past_key_value'is of type tuple as default.
 | 
			
		||||
                        for i, (t3, t4) in enumerate(zip(t1, t2)):
 | 
			
		||||
                            if model.config.architectures[0] == "ChatGLMModel" and \
 | 
			
		||||
                                    hasattr(model.config, 'padded_vocab_size') and \
 | 
			
		||||
                                    model.config.padded_vocab_size == 65024:
 | 
			
		||||
                                # chatglm2's past_key_value is expanded 16x for some speedup.
 | 
			
		||||
                                # We need to narrow it here.
 | 
			
		||||
                                t4 = t4[:, :, 15:17, :]
 | 
			
		||||
                            attn_output_diff.append(t3 - t4)
 | 
			
		||||
 | 
			
		||||
            max_diff_tensor = [torch.max(item).item() for item in attn_output_diff]
 | 
			
		||||
            print(max_diff_tensor)
 | 
			
		||||
            assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def test_falcon_gpu_model(self):
 | 
			
		||||
 | 
			
		||||
        Model = AutoModelForCausalLM
 | 
			
		||||
        Tokenizer = AutoTokenizer
 | 
			
		||||
        model_path = os.environ.get('FALCON_7B_ORIGIN_PATH')
 | 
			
		||||
        # currently only compare the output of the last self-attention layer.
 | 
			
		||||
        layer_norm = "transformer.h.31.input_layernorm"
 | 
			
		||||
        self_attn = "transformer.h.31.self_attention"
 | 
			
		||||
        lower_bound = 0
 | 
			
		||||
 | 
			
		||||
        self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def test_llama_gpu_model(self):
 | 
			
		||||
 | 
			
		||||
        Model = AutoModelForCausalLM
 | 
			
		||||
        Tokenizer = AutoTokenizer
 | 
			
		||||
        model_path = os.environ.get('LLAMA2_7B_ORIGIN_PATH')
 | 
			
		||||
        # currently only compare the output of the last self-attention layer.
 | 
			
		||||
        layer_norm = "model.layers.31.input_layernorm"
 | 
			
		||||
        self_attn = "model.layers.31.self_attn"
 | 
			
		||||
        lower_bound = 5e-2
 | 
			
		||||
 | 
			
		||||
        self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
 | 
			
		||||
 | 
			
		||||
    def test_chatglm2_gpu_model(self):
 | 
			
		||||
 | 
			
		||||
        Model = AutoModel
 | 
			
		||||
        Tokenizer = AutoTokenizer
 | 
			
		||||
        model_path = os.environ.get('CHATGLM2_6B_ORIGIN_PATH')
 | 
			
		||||
        # currently only need to compare the output of one self-attention layer.
 | 
			
		||||
        layer_norm = "transformer.encoder.layers.27.input_layernorm"
 | 
			
		||||
        self_attn = "transformer.encoder.layers.27.self_attention"
 | 
			
		||||
        lower_bound = 1e-3
 | 
			
		||||
 | 
			
		||||
        self.run_optimize_gpu_model(Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
 | 
			
		||||
 | 
			
		||||
    assert answer in output_str
 | 
			
		||||
 | 
			
		||||
#def test_transformers_auto_model_for_speech_seq2seq_int4():
 | 
			
		||||
#    from transformers import WhisperProcessor
 | 
			
		||||
#    from datasets import load_from_disk
 | 
			
		||||
#    model_path = os.environ.get('WHISPER_TINY_ORIGIN_PATH')
 | 
			
		||||
#    dataset_path = os.environ.get('SPEECH_DATASET_PATH')
 | 
			
		||||
#    processor = WhisperProcessor.from_pretrained(model_path)
 | 
			
		||||
#    ds = load_from_disk(dataset_path)
 | 
			
		||||
#    sample = ds[0]["audio"]
 | 
			
		||||
#    input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
 | 
			
		||||
#    input_features = input_features.to(device)
 | 
			
		||||
#    model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True, optimize_model=True)
 | 
			
		||||
#    model = model.to(device)
 | 
			
		||||
#    predicted_ids = model.generate(input_features)
 | 
			
		||||
#    # decode token ids to text
 | 
			
		||||
#    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
 | 
			
		||||
#    model.to('cpu')
 | 
			
		||||
#    print('Output:', transcription)
 | 
			
		||||
#    assert 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0]
 | 
			
		||||
        
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    pytest.main([__file__])
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -5,6 +5,7 @@ export LLM_HOME=${ANALYTICS_ZOO_ROOT}/python/llm/src
 | 
			
		|||
export LLM_INFERENCE_TEST_DIR=${ANALYTICS_ZOO_ROOT}/python/llm/test/inference_gpu
 | 
			
		||||
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export DEVICE='xpu'
 | 
			
		||||
 | 
			
		||||
set -e
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue