parent
c75f3dd874
commit
a0c73c26d8
4 changed files with 6 additions and 72 deletions
|
|
@ -415,11 +415,6 @@ class FusedBaichuanLowBitMultiDecoderlayer(torch.nn.Module):
|
||||||
return outputs
|
return outputs
|
||||||
|
|
||||||
def post_forward(self, past_key_value, new_keys, new_values):
|
def post_forward(self, past_key_value, new_keys, new_values):
|
||||||
key_value_states = []
|
|
||||||
for i in range(self.intra_stages):
|
|
||||||
for j in range(1, len(self.backend_decoders[i].torch_out)):
|
|
||||||
key_value_states.append(self.backend_decoders[i].torch_out[j])
|
|
||||||
|
|
||||||
cache_kwargs = {
|
cache_kwargs = {
|
||||||
"max_seq_len": self.max_seq_len,
|
"max_seq_len": self.max_seq_len,
|
||||||
"transpose": self.transpose_value,
|
"transpose": self.transpose_value,
|
||||||
|
|
@ -556,7 +551,6 @@ def run_decode(
|
||||||
head_dim = model.model.layers[layer_start].self_attn.head_dim
|
head_dim = model.model.layers[layer_start].self_attn.head_dim
|
||||||
rms_norm_eps = model.config.rms_norm_eps
|
rms_norm_eps = model.config.rms_norm_eps
|
||||||
intermediate_size = model.config.intermediate_size
|
intermediate_size = model.config.intermediate_size
|
||||||
deocderlayers = []
|
|
||||||
layer_weights = []
|
layer_weights = []
|
||||||
input_layer_norm_weights = []
|
input_layer_norm_weights = []
|
||||||
post_attn_layernorm_weights = []
|
post_attn_layernorm_weights = []
|
||||||
|
|
@ -610,13 +604,12 @@ def run_decode(
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
while True:
|
while True:
|
||||||
|
|
||||||
dist.broadcast(control, src=0)
|
dist.broadcast(control, src=0, async_op=False)
|
||||||
if control.item() == -2:
|
if control.item() == -2:
|
||||||
break
|
break
|
||||||
elif control.item() == -1:
|
elif control.item() == -1:
|
||||||
past_key_values = input_queue.get()
|
past_key_values = input_queue.get()
|
||||||
else:
|
else:
|
||||||
t0 = time.perf_counter()
|
|
||||||
past_key_values_length = past_key_values.get_seq_length()
|
past_key_values_length = past_key_values.get_seq_length()
|
||||||
seq_length_with_past = 1 + past_key_values_length
|
seq_length_with_past = 1 + past_key_values_length
|
||||||
position_ids = torch.arange(
|
position_ids = torch.arange(
|
||||||
|
|
@ -636,7 +629,6 @@ def run_decode(
|
||||||
)
|
)
|
||||||
padded_causal_mask[:, :, :, -1] = 0.0
|
padded_causal_mask[:, :, :, -1] = 0.0
|
||||||
dist.recv(hidden_states, src=rank - 1)
|
dist.recv(hidden_states, src=rank - 1)
|
||||||
t1 = time.perf_counter()
|
|
||||||
layer_outputs = multi_decoder(
|
layer_outputs = multi_decoder(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
attention_mask=padded_causal_mask,
|
attention_mask=padded_causal_mask,
|
||||||
|
|
@ -645,11 +637,8 @@ def run_decode(
|
||||||
output_attentions=False,
|
output_attentions=False,
|
||||||
use_cache=True,
|
use_cache=True,
|
||||||
)
|
)
|
||||||
t2 = time.perf_counter()
|
|
||||||
hidden_states = layer_outputs[0]
|
hidden_states = layer_outputs[0]
|
||||||
t3 = time.perf_counter()
|
|
||||||
dist.send(hidden_states, dst=(rank + 1) % world_size)
|
dist.send(hidden_states, dst=(rank + 1) % world_size)
|
||||||
t4 = time.perf_counter()
|
|
||||||
past_key_values = layer_outputs[1]
|
past_key_values = layer_outputs[1]
|
||||||
new_keys = layer_outputs[2]
|
new_keys = layer_outputs[2]
|
||||||
new_values = layer_outputs[3]
|
new_values = layer_outputs[3]
|
||||||
|
|
@ -674,6 +663,7 @@ class DecodeRunner:
|
||||||
self.input_queues = []
|
self.input_queues = []
|
||||||
self.output_queues = []
|
self.output_queues = []
|
||||||
self.decoder_processes = []
|
self.decoder_processes = []
|
||||||
|
self.forward_signal = torch.tensor(0, dtype=torch.int)
|
||||||
|
|
||||||
for rank in range(1, world_size):
|
for rank in range(1, world_size):
|
||||||
input_q = mp.Queue()
|
input_q = mp.Queue()
|
||||||
|
|
@ -721,21 +711,17 @@ class DecodeRunner:
|
||||||
output_attentions: Optional[bool] = False,
|
output_attentions: Optional[bool] = False,
|
||||||
use_cache: Optional[bool] = False,
|
use_cache: Optional[bool] = False,
|
||||||
):
|
):
|
||||||
t0 = time.perf_counter()
|
|
||||||
|
|
||||||
if self.cache_past_key_value != past_key_value:
|
if self.cache_past_key_value != past_key_value:
|
||||||
control = torch.tensor(-1, dtype=torch.int)
|
control = torch.tensor(-1, dtype=torch.int)
|
||||||
dist.broadcast(control, src=0)
|
dist.broadcast(control, src=0)
|
||||||
for i in range(len(self.decoder_processes)):
|
for i in range(len(self.decoder_processes)):
|
||||||
self.input_queues[i].put(past_key_value)
|
self.input_queues[i].put(past_key_value)
|
||||||
|
|
||||||
control = torch.tensor(0, dtype=torch.int)
|
dist.broadcast(self.forward_signal, src=0, async_op=True)
|
||||||
dist.broadcast(control, src=0)
|
|
||||||
hidden_states = hidden_states.to(torch.float16)
|
hidden_states = hidden_states.to(torch.float16)
|
||||||
dist.send(hidden_states, dst=1)
|
dist.send(hidden_states, dst=1)
|
||||||
past_key_value.expand(self.transpose_value_cache)
|
past_key_value.expand(self.transpose_value_cache)
|
||||||
dist.recv(hidden_states, src=self.world_size - 1)
|
dist.recv(hidden_states, src=self.world_size - 1)
|
||||||
t1 = time.perf_counter()
|
|
||||||
return hidden_states, past_key_value
|
return hidden_states, past_key_value
|
||||||
|
|
||||||
def shutdown(self):
|
def shutdown(self):
|
||||||
|
|
@ -918,7 +904,6 @@ def gen_baichuan_fused_model_forward(prefill_runner, decode_runner):
|
||||||
output_hidden_states: Optional[bool] = None,
|
output_hidden_states: Optional[bool] = None,
|
||||||
return_dict: Optional[bool] = None,
|
return_dict: Optional[bool] = None,
|
||||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
t0 = time.perf_counter()
|
|
||||||
output_attentions = (
|
output_attentions = (
|
||||||
output_attentions if output_attentions is not None else self.config.output_attentions
|
output_attentions if output_attentions is not None else self.config.output_attentions
|
||||||
)
|
)
|
||||||
|
|
@ -1026,8 +1011,6 @@ def gen_baichuan_fused_model_forward(prefill_runner, decode_runner):
|
||||||
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
||||||
if v is not None
|
if v is not None
|
||||||
)
|
)
|
||||||
t1 = time.perf_counter()
|
|
||||||
# print("fused model forward time: ", t1 - t0)
|
|
||||||
return BaseModelOutputWithPast(
|
return BaseModelOutputWithPast(
|
||||||
last_hidden_state=hidden_states,
|
last_hidden_state=hidden_states,
|
||||||
past_key_values=next_cache,
|
past_key_values=next_cache,
|
||||||
|
|
|
||||||
|
|
@ -330,11 +330,6 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
||||||
return outputs
|
return outputs
|
||||||
|
|
||||||
def post_forward(self, past_key_value, new_keys, new_values, cache_position):
|
def post_forward(self, past_key_value, new_keys, new_values, cache_position):
|
||||||
key_value_states = []
|
|
||||||
for i in range(self.intra_stages):
|
|
||||||
for j in range(1, len(self.backend_decoders[i].torch_out)):
|
|
||||||
key_value_states.append(self.backend_decoders[i].torch_out[j])
|
|
||||||
|
|
||||||
cache_kwargs = {
|
cache_kwargs = {
|
||||||
"cache_position": cache_position,
|
"cache_position": cache_position,
|
||||||
"max_seq_len": self.max_seq_len,
|
"max_seq_len": self.max_seq_len,
|
||||||
|
|
@ -474,7 +469,6 @@ def run_decode(
|
||||||
head_dim = model.model.layers[layer_start].self_attn.head_dim
|
head_dim = model.model.layers[layer_start].self_attn.head_dim
|
||||||
rms_norm_eps = model.config.rms_norm_eps
|
rms_norm_eps = model.config.rms_norm_eps
|
||||||
intermediate_size = model.config.intermediate_size
|
intermediate_size = model.config.intermediate_size
|
||||||
deocderlayers = []
|
|
||||||
layer_weights = []
|
layer_weights = []
|
||||||
input_layer_norm_weights = []
|
input_layer_norm_weights = []
|
||||||
post_attn_layernorm_weights = []
|
post_attn_layernorm_weights = []
|
||||||
|
|
@ -536,7 +530,6 @@ def run_decode(
|
||||||
elif control.item() == -1:
|
elif control.item() == -1:
|
||||||
past_key_values = input_queue.get()
|
past_key_values = input_queue.get()
|
||||||
else:
|
else:
|
||||||
t0 = time.perf_counter()
|
|
||||||
past_seen_tokens = past_key_values.get_seq_length()
|
past_seen_tokens = past_key_values.get_seq_length()
|
||||||
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
|
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
|
||||||
cache_position = torch.arange(
|
cache_position = torch.arange(
|
||||||
|
|
@ -555,7 +548,6 @@ def run_decode(
|
||||||
)
|
)
|
||||||
padded_causal_mask[:, :, :, -1] = 0.0
|
padded_causal_mask[:, :, :, -1] = 0.0
|
||||||
dist.recv(hidden_states, src=rank - 1)
|
dist.recv(hidden_states, src=rank - 1)
|
||||||
t1 = time.perf_counter()
|
|
||||||
layer_outputs = multi_decoder(
|
layer_outputs = multi_decoder(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
attention_mask=padded_causal_mask,
|
attention_mask=padded_causal_mask,
|
||||||
|
|
@ -565,11 +557,8 @@ def run_decode(
|
||||||
use_cache=True,
|
use_cache=True,
|
||||||
cache_position=cache_position,
|
cache_position=cache_position,
|
||||||
)
|
)
|
||||||
t2 = time.perf_counter()
|
|
||||||
hidden_states = layer_outputs[0]
|
hidden_states = layer_outputs[0]
|
||||||
t3 = time.perf_counter()
|
|
||||||
dist.send(hidden_states, dst=(rank + 1) % world_size)
|
dist.send(hidden_states, dst=(rank + 1) % world_size)
|
||||||
t4 = time.perf_counter()
|
|
||||||
past_key_values = layer_outputs[1]
|
past_key_values = layer_outputs[1]
|
||||||
new_keys = layer_outputs[2]
|
new_keys = layer_outputs[2]
|
||||||
new_values = layer_outputs[3]
|
new_values = layer_outputs[3]
|
||||||
|
|
@ -651,14 +640,11 @@ class DecodeRunner:
|
||||||
dist.broadcast(control, src=0)
|
dist.broadcast(control, src=0)
|
||||||
for i in range(len(self.decoder_processes)):
|
for i in range(len(self.decoder_processes)):
|
||||||
self.input_queues[i].put(past_key_value)
|
self.input_queues[i].put(past_key_value)
|
||||||
t0 = time.perf_counter()
|
|
||||||
dist.broadcast(self.forward_signal, src=0, async_op=True)
|
dist.broadcast(self.forward_signal, src=0, async_op=True)
|
||||||
t1 = time.perf_counter()
|
|
||||||
hidden_states = hidden_states.to(torch.float16)
|
hidden_states = hidden_states.to(torch.float16)
|
||||||
dist.send(hidden_states, dst=1)
|
dist.send(hidden_states, dst=1)
|
||||||
past_key_value.expand(self.transpose_value_cache)
|
past_key_value.expand(self.transpose_value_cache)
|
||||||
dist.recv(hidden_states, src=self.world_size - 1)
|
dist.recv(hidden_states, src=self.world_size - 1)
|
||||||
t2 = time.perf_counter()
|
|
||||||
return hidden_states, past_key_value
|
return hidden_states, past_key_value
|
||||||
|
|
||||||
def shutdown(self):
|
def shutdown(self):
|
||||||
|
|
@ -847,7 +833,6 @@ def gen_llama_fused_model_forward(prefill_runner, decode_runner):
|
||||||
return_dict: Optional[bool] = None,
|
return_dict: Optional[bool] = None,
|
||||||
cache_position: Optional[torch.LongTensor] = None,
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
t0 = time.perf_counter()
|
|
||||||
output_attentions = (
|
output_attentions = (
|
||||||
output_attentions if output_attentions is not None else self.config.output_attentions
|
output_attentions if output_attentions is not None else self.config.output_attentions
|
||||||
)
|
)
|
||||||
|
|
@ -938,8 +923,6 @@ def gen_llama_fused_model_forward(prefill_runner, decode_runner):
|
||||||
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
||||||
if v is not None
|
if v is not None
|
||||||
)
|
)
|
||||||
t1 = time.perf_counter()
|
|
||||||
# print("fused model forward time: ", t1 - t0)
|
|
||||||
return BaseModelOutputWithPast(
|
return BaseModelOutputWithPast(
|
||||||
last_hidden_state=hidden_states,
|
last_hidden_state=hidden_states,
|
||||||
past_key_values=next_cache,
|
past_key_values=next_cache,
|
||||||
|
|
|
||||||
|
|
@ -354,11 +354,6 @@ class FusedLlamaLowBitMultiDecoderlayer(torch.nn.Module):
|
||||||
return outputs
|
return outputs
|
||||||
|
|
||||||
def post_forward(self, past_key_value, new_keys, new_values):
|
def post_forward(self, past_key_value, new_keys, new_values):
|
||||||
key_value_states = []
|
|
||||||
for i in range(self.intra_stages):
|
|
||||||
for j in range(1, len(self.backend_decoders[i].torch_out)):
|
|
||||||
key_value_states.append(self.backend_decoders[i].torch_out[j])
|
|
||||||
|
|
||||||
cache_kwargs = {
|
cache_kwargs = {
|
||||||
"max_seq_len": self.max_seq_len,
|
"max_seq_len": self.max_seq_len,
|
||||||
"transpose": self.transpose_value,
|
"transpose": self.transpose_value,
|
||||||
|
|
@ -501,7 +496,6 @@ def run_decode(
|
||||||
rms_norm_eps = model.config.rms_norm_eps
|
rms_norm_eps = model.config.rms_norm_eps
|
||||||
intermediate_size = model.config.intermediate_size
|
intermediate_size = model.config.intermediate_size
|
||||||
num_hidden_layers = model.config.num_hidden_layers
|
num_hidden_layers = model.config.num_hidden_layers
|
||||||
deocderlayers = []
|
|
||||||
layer_weights = []
|
layer_weights = []
|
||||||
input_layer_norm_weights = []
|
input_layer_norm_weights = []
|
||||||
post_attn_layernorm_weights = []
|
post_attn_layernorm_weights = []
|
||||||
|
|
@ -559,13 +553,12 @@ def run_decode(
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
while True:
|
while True:
|
||||||
|
|
||||||
dist.broadcast(control, src=0)
|
dist.broadcast(control, src=0, async_op=False)
|
||||||
if control.item() == -2:
|
if control.item() == -2:
|
||||||
break
|
break
|
||||||
elif control.item() == -1:
|
elif control.item() == -1:
|
||||||
past_key_values = input_queue.get()
|
past_key_values = input_queue.get()
|
||||||
else:
|
else:
|
||||||
t0 = time.perf_counter()
|
|
||||||
past_seen_tokens = past_key_values.get_seq_length()
|
past_seen_tokens = past_key_values.get_seq_length()
|
||||||
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
|
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
|
||||||
cache_position = torch.arange(
|
cache_position = torch.arange(
|
||||||
|
|
@ -589,7 +582,6 @@ def run_decode(
|
||||||
)
|
)
|
||||||
padded_causal_mask[:, :, :, -1] = 0.0
|
padded_causal_mask[:, :, :, -1] = 0.0
|
||||||
dist.recv(hidden_states, src=rank - 1)
|
dist.recv(hidden_states, src=rank - 1)
|
||||||
t1 = time.perf_counter()
|
|
||||||
layer_outputs = multi_decoder(
|
layer_outputs = multi_decoder(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
attention_mask=padded_causal_mask,
|
attention_mask=padded_causal_mask,
|
||||||
|
|
@ -598,11 +590,8 @@ def run_decode(
|
||||||
output_attentions=False,
|
output_attentions=False,
|
||||||
use_cache=True,
|
use_cache=True,
|
||||||
)
|
)
|
||||||
t2 = time.perf_counter()
|
|
||||||
hidden_states = layer_outputs[0]
|
hidden_states = layer_outputs[0]
|
||||||
t3 = time.perf_counter()
|
|
||||||
dist.send(hidden_states, dst=(rank + 1) % world_size)
|
dist.send(hidden_states, dst=(rank + 1) % world_size)
|
||||||
t4 = time.perf_counter()
|
|
||||||
past_key_values = layer_outputs[1]
|
past_key_values = layer_outputs[1]
|
||||||
new_keys = layer_outputs[2]
|
new_keys = layer_outputs[2]
|
||||||
new_values = layer_outputs[3]
|
new_values = layer_outputs[3]
|
||||||
|
|
@ -628,6 +617,7 @@ class DecodeRunner:
|
||||||
self.input_queues = []
|
self.input_queues = []
|
||||||
self.output_queues = []
|
self.output_queues = []
|
||||||
self.decoder_processes = []
|
self.decoder_processes = []
|
||||||
|
self.forward_signal = torch.tensor(0, dtype=torch.int)
|
||||||
|
|
||||||
for rank in range(1, world_size):
|
for rank in range(1, world_size):
|
||||||
input_q = mp.Queue()
|
input_q = mp.Queue()
|
||||||
|
|
@ -677,21 +667,17 @@ class DecodeRunner:
|
||||||
use_cache: bool = False,
|
use_cache: bool = False,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
):
|
):
|
||||||
t0 = time.perf_counter()
|
|
||||||
|
|
||||||
if self.cache_past_key_value != past_key_value:
|
if self.cache_past_key_value != past_key_value:
|
||||||
control = torch.tensor(-1, dtype=torch.int)
|
control = torch.tensor(-1, dtype=torch.int)
|
||||||
dist.broadcast(control, src=0)
|
dist.broadcast(control, src=0)
|
||||||
for i in range(len(self.decoder_processes)):
|
for i in range(len(self.decoder_processes)):
|
||||||
self.input_queues[i].put(past_key_value)
|
self.input_queues[i].put(past_key_value)
|
||||||
|
|
||||||
control = torch.tensor(0, dtype=torch.int)
|
dist.broadcast(self.forward_signal, src=0, async_op=True)
|
||||||
dist.broadcast(control, src=0)
|
|
||||||
hidden_states = hidden_states.to(torch.float16)
|
hidden_states = hidden_states.to(torch.float16)
|
||||||
dist.send(hidden_states, dst=1)
|
dist.send(hidden_states, dst=1)
|
||||||
past_key_value.expand(self.transpose_value_cache)
|
past_key_value.expand(self.transpose_value_cache)
|
||||||
dist.recv(hidden_states, src=self.world_size - 1)
|
dist.recv(hidden_states, src=self.world_size - 1)
|
||||||
t1 = time.perf_counter()
|
|
||||||
return hidden_states, past_key_value
|
return hidden_states, past_key_value
|
||||||
|
|
||||||
def shutdown(self):
|
def shutdown(self):
|
||||||
|
|
@ -889,7 +875,6 @@ def gen_minicpm_fused_model_forward(prefill_runner, decode_runner):
|
||||||
output_hidden_states: Optional[bool] = None,
|
output_hidden_states: Optional[bool] = None,
|
||||||
return_dict: Optional[bool] = None,
|
return_dict: Optional[bool] = None,
|
||||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
t0 = time.perf_counter()
|
|
||||||
output_attentions = (
|
output_attentions = (
|
||||||
output_attentions if output_attentions is not None
|
output_attentions if output_attentions is not None
|
||||||
else self.config.output_attentions
|
else self.config.output_attentions
|
||||||
|
|
@ -978,7 +963,6 @@ def gen_minicpm_fused_model_forward(prefill_runner, decode_runner):
|
||||||
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
||||||
if v is not None
|
if v is not None
|
||||||
)
|
)
|
||||||
t1 = time.perf_counter()
|
|
||||||
return BaseModelOutputWithPast(
|
return BaseModelOutputWithPast(
|
||||||
last_hidden_state=hidden_states,
|
last_hidden_state=hidden_states,
|
||||||
past_key_values=next_cache,
|
past_key_values=next_cache,
|
||||||
|
|
|
||||||
|
|
@ -412,11 +412,6 @@ class FusedQwenLowBitMultiDecoderlayer(torch.nn.Module):
|
||||||
return outputs
|
return outputs
|
||||||
|
|
||||||
def post_forward(self, past_key_value, new_keys, new_values):
|
def post_forward(self, past_key_value, new_keys, new_values):
|
||||||
key_value_states = []
|
|
||||||
for i in range(self.intra_stages):
|
|
||||||
for j in range(1, len(self.backend_decoders[i].torch_out)):
|
|
||||||
key_value_states.append(self.backend_decoders[i].torch_out[j])
|
|
||||||
|
|
||||||
cache_kwargs = {
|
cache_kwargs = {
|
||||||
"max_seq_len": self.max_seq_len,
|
"max_seq_len": self.max_seq_len,
|
||||||
"transpose": self.transpose_value,
|
"transpose": self.transpose_value,
|
||||||
|
|
@ -555,7 +550,6 @@ def run_decode(
|
||||||
head_dim = model.model.layers[layer_start].self_attn.head_dim
|
head_dim = model.model.layers[layer_start].self_attn.head_dim
|
||||||
rms_norm_eps = model.config.rms_norm_eps
|
rms_norm_eps = model.config.rms_norm_eps
|
||||||
intermediate_size = model.config.intermediate_size
|
intermediate_size = model.config.intermediate_size
|
||||||
deocderlayers = []
|
|
||||||
layer_weights = []
|
layer_weights = []
|
||||||
input_layer_norm_weights = []
|
input_layer_norm_weights = []
|
||||||
post_attn_layernorm_weights = []
|
post_attn_layernorm_weights = []
|
||||||
|
|
@ -640,7 +634,6 @@ def run_decode(
|
||||||
elif control.item() == -1:
|
elif control.item() == -1:
|
||||||
past_key_values = input_queue.get()
|
past_key_values = input_queue.get()
|
||||||
else:
|
else:
|
||||||
t0 = time.perf_counter()
|
|
||||||
past_seen_tokens = past_key_values.get_seq_length()
|
past_seen_tokens = past_key_values.get_seq_length()
|
||||||
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
|
attention_mask = torch.ones([1, past_seen_tokens + 1], dtype=torch.int64)
|
||||||
position_ids = torch.arange(
|
position_ids = torch.arange(
|
||||||
|
|
@ -669,7 +662,6 @@ def run_decode(
|
||||||
)
|
)
|
||||||
padded_causal_mask[:, :, :, -1] = 0.0
|
padded_causal_mask[:, :, :, -1] = 0.0
|
||||||
dist.recv(hidden_states, src=rank - 1)
|
dist.recv(hidden_states, src=rank - 1)
|
||||||
t1 = time.perf_counter()
|
|
||||||
layer_outputs = multi_decoder(
|
layer_outputs = multi_decoder(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
attention_mask=padded_causal_mask,
|
attention_mask=padded_causal_mask,
|
||||||
|
|
@ -678,11 +670,8 @@ def run_decode(
|
||||||
output_attentions=False,
|
output_attentions=False,
|
||||||
use_cache=True,
|
use_cache=True,
|
||||||
)
|
)
|
||||||
t2 = time.perf_counter()
|
|
||||||
hidden_states = layer_outputs[0]
|
hidden_states = layer_outputs[0]
|
||||||
t3 = time.perf_counter()
|
|
||||||
dist.send(hidden_states, dst=(rank + 1) % world_size)
|
dist.send(hidden_states, dst=(rank + 1) % world_size)
|
||||||
t4 = time.perf_counter()
|
|
||||||
past_key_values = layer_outputs[1]
|
past_key_values = layer_outputs[1]
|
||||||
new_keys = layer_outputs[2]
|
new_keys = layer_outputs[2]
|
||||||
new_values = layer_outputs[3]
|
new_values = layer_outputs[3]
|
||||||
|
|
@ -757,22 +746,17 @@ class DecodeRunner:
|
||||||
use_cache: bool = False,
|
use_cache: bool = False,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
):
|
):
|
||||||
t0 = time.perf_counter()
|
|
||||||
|
|
||||||
if self.cache_past_key_value != past_key_value:
|
if self.cache_past_key_value != past_key_value:
|
||||||
control = torch.tensor(-1, dtype=torch.int)
|
control = torch.tensor(-1, dtype=torch.int)
|
||||||
dist.broadcast(control, src=0)
|
dist.broadcast(control, src=0)
|
||||||
for i in range(len(self.decoder_processes)):
|
for i in range(len(self.decoder_processes)):
|
||||||
self.input_queues[i].put(past_key_value)
|
self.input_queues[i].put(past_key_value)
|
||||||
|
|
||||||
t0 = time.perf_counter()
|
|
||||||
dist.broadcast(self.forward_signal, src=0, async_op=True)
|
dist.broadcast(self.forward_signal, src=0, async_op=True)
|
||||||
t1 = time.perf_counter()
|
|
||||||
hidden_states = hidden_states.to(torch.float16)
|
hidden_states = hidden_states.to(torch.float16)
|
||||||
dist.send(hidden_states, dst=1)
|
dist.send(hidden_states, dst=1)
|
||||||
past_key_value.expand(self.transpose_value_cache)
|
past_key_value.expand(self.transpose_value_cache)
|
||||||
dist.recv(hidden_states, src=self.world_size - 1)
|
dist.recv(hidden_states, src=self.world_size - 1)
|
||||||
t2 = time.perf_counter()
|
|
||||||
return hidden_states, past_key_value
|
return hidden_states, past_key_value
|
||||||
|
|
||||||
def shutdown(self):
|
def shutdown(self):
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue