Chronos: Update doc to illustrate deploy mode in TSDataset (#6871)
				
					
				
			* update doc to illustrate deploy mode * fix * revise howto guide
This commit is contained in:
		
							parent
							
								
									414c220111
								
							
						
					
					
						commit
						9fae00dafd
					
				
					 1 changed files with 2 additions and 0 deletions
				
			
		| 
						 | 
					@ -80,6 +80,8 @@ You can initialize a [`XShardsTSDataset`](../../PythonAPI/Chronos/tsdataset.html
 | 
				
			||||||
 | 
					
 | 
				
			||||||
If you are building a prototype for your forecasting/anomaly detection task and you need to split you TSDataset to train/valid/test set, you can use `with_split` parameter.[`TSDataset`](../../PythonAPI/Chronos/tsdataset.html) or [`XShardsTSDataset`](../../PythonAPI/Chronos/tsdataset.html#xshardstsdataset) supports split with ratio by `val_ratio` and `test_ratio`.
 | 
					If you are building a prototype for your forecasting/anomaly detection task and you need to split you TSDataset to train/valid/test set, you can use `with_split` parameter.[`TSDataset`](../../PythonAPI/Chronos/tsdataset.html) or [`XShardsTSDataset`](../../PythonAPI/Chronos/tsdataset.html#xshardstsdataset) supports split with ratio by `val_ratio` and `test_ratio`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					If you are deploying your model in production environment, you can use `deploy_mode` parameter and specify it to `True` when calling `TSDataset.from_pandas`, `TSDataset.from_parquet` or `TSDataset.from_prometheus`, which will reduce data processing latency and set necessary parameters for data processing and feature engineering.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 3. Time series dataset preprocessing
 | 
					## 3. Time series dataset preprocessing
 | 
				
			||||||
[`TSDataset`](../../PythonAPI/Chronos/tsdataset.html) supports [`impute`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.tsdataset.TSDataset.impute), [`deduplicate`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.tsdataset.TSDataset.deduplicate) and [`resample`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.tsdataset.TSDataset.resample). You may fill the missing point by [`impute`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.tsdataset.TSDataset.impute) in different modes. You may remove the records that are totally the same by [`deduplicate`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.tsdataset.TSDataset.deduplicate). You may change the sample frequency by [`resample`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.tsdataset.TSDataset.resample). [`XShardsTSDataset`](../../PythonAPI/Chronos/tsdataset.html#xshardstsdataset) only supports [`impute`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.experimental.xshards_tsdataset.XShardsTSDataset.impute) for now.
 | 
					[`TSDataset`](../../PythonAPI/Chronos/tsdataset.html) supports [`impute`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.tsdataset.TSDataset.impute), [`deduplicate`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.tsdataset.TSDataset.deduplicate) and [`resample`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.tsdataset.TSDataset.resample). You may fill the missing point by [`impute`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.tsdataset.TSDataset.impute) in different modes. You may remove the records that are totally the same by [`deduplicate`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.tsdataset.TSDataset.deduplicate). You may change the sample frequency by [`resample`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.tsdataset.TSDataset.resample). [`XShardsTSDataset`](../../PythonAPI/Chronos/tsdataset.html#xshardstsdataset) only supports [`impute`](../../PythonAPI/Chronos/tsdataset.html#bigdl.chronos.data.experimental.xshards_tsdataset.XShardsTSDataset.impute) for now.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue