optimize llama npu perf (#11426)
This commit is contained in:
parent
e473b8d946
commit
9f6e5b4fba
4 changed files with 190 additions and 1 deletions
|
|
@ -27,6 +27,7 @@ import intel_npu_acceleration_library as npu_lib
|
||||||
|
|
||||||
from ipex_llm.utils.common.log4Error import invalidInputError
|
from ipex_llm.utils.common.log4Error import invalidInputError
|
||||||
from ipex_llm.transformers.utils import logger
|
from ipex_llm.transformers.utils import logger
|
||||||
|
from ipex_llm.transformers.npu_models.convert import optimize_llm
|
||||||
|
|
||||||
|
|
||||||
def patch_flash_attn_import(filename: str) -> List[str]:
|
def patch_flash_attn_import(filename: str) -> List[str]:
|
||||||
|
|
@ -112,7 +113,23 @@ class _BaseAutoModelClass:
|
||||||
model = cls.HF_Model.from_pretrained(*args, **kwargs)
|
model = cls.HF_Model.from_pretrained(*args, **kwargs)
|
||||||
|
|
||||||
logger.info(f"Converting model, it may takes up to several minutes ...")
|
logger.info(f"Converting model, it may takes up to several minutes ...")
|
||||||
|
try:
|
||||||
|
# for intel_npu_acceleration_library >= 1.1.0
|
||||||
|
from intel_npu_acceleration_library.quantization import quantize_model
|
||||||
|
from intel_npu_acceleration_library.compiler import (
|
||||||
|
apply_horizontal_fusion, create_npu_kernels
|
||||||
|
)
|
||||||
|
with torch.no_grad():
|
||||||
|
optimize_llm(model)
|
||||||
|
apply_horizontal_fusion(model)
|
||||||
|
if not qtype.is_floating_point:
|
||||||
|
model = quantize_model(model, qtype)
|
||||||
|
create_npu_kernels(model)
|
||||||
|
model = model.eval()
|
||||||
|
except ImportError as _e:
|
||||||
|
# for intel_npu_acceleration_library < 1.1.0
|
||||||
model = npu_lib.compile(model, qtype, False)
|
model = npu_lib.compile(model, qtype, False)
|
||||||
|
logger.info(f"Finish to convert model")
|
||||||
|
|
||||||
# add save_low_bit to pretrained model dynamically
|
# add save_low_bit to pretrained model dynamically
|
||||||
model.save_low_bit = types.MethodType(cls.save_low_bit, model)
|
model.save_low_bit = types.MethodType(cls.save_low_bit, model)
|
||||||
|
|
|
||||||
15
python/llm/src/ipex_llm/transformers/npu_models/__init__.py
Normal file
15
python/llm/src/ipex_llm/transformers/npu_models/__init__.py
Normal file
|
|
@ -0,0 +1,15 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
34
python/llm/src/ipex_llm/transformers/npu_models/convert.py
Normal file
34
python/llm/src/ipex_llm/transformers/npu_models/convert.py
Normal file
|
|
@ -0,0 +1,34 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def convert_forward(m, target_m, new_forward):
|
||||||
|
if m.__class__ == target_m:
|
||||||
|
bound_method = new_forward.__get__(m, m.__class__)
|
||||||
|
setattr(m, "forward", bound_method)
|
||||||
|
for _, sub_m in m.named_children():
|
||||||
|
convert_forward(sub_m, target_m, new_forward)
|
||||||
|
|
||||||
|
|
||||||
|
def optimize_llm(model: torch.nn.Module):
|
||||||
|
if model.config.model_type == "llama":
|
||||||
|
from ipex_llm.transformers.npu_models.llama import merge_qkv
|
||||||
|
model.apply(merge_qkv)
|
||||||
|
from ipex_llm.transformers.npu_models.llama import llama_attention_forward
|
||||||
|
from transformers.models.llama.modeling_llama import LlamaAttention
|
||||||
|
convert_forward(model, LlamaAttention, llama_attention_forward)
|
||||||
123
python/llm/src/ipex_llm/transformers/npu_models/llama.py
Normal file
123
python/llm/src/ipex_llm/transformers/npu_models/llama.py
Normal file
|
|
@ -0,0 +1,123 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Some parts of this file is adapted from
|
||||||
|
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py
|
||||||
|
# which is licensed under Apache License 2.0:
|
||||||
|
#
|
||||||
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
from transformers.cache_utils import Cache
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transformers.models.llama.modeling_llama import LlamaAttention, repeat_kv, apply_rotary_pos_emb
|
||||||
|
|
||||||
|
|
||||||
|
def merge_qkv(module: torch.nn.Module):
|
||||||
|
if isinstance(module, LlamaAttention):
|
||||||
|
new_weight = torch.cat([
|
||||||
|
module.q_proj.weight.data,
|
||||||
|
module.k_proj.weight.data,
|
||||||
|
module.v_proj.weight.data,
|
||||||
|
], dim=0)
|
||||||
|
|
||||||
|
if module.q_proj.bias is not None:
|
||||||
|
qkv_proj = torch.nn.Linear(0, 0, bias=True)
|
||||||
|
new_bias = torch.cat([
|
||||||
|
module.q_proj.bias.data,
|
||||||
|
module.k_proj.bias.data,
|
||||||
|
module.v_proj.bias.data,
|
||||||
|
], dim=0)
|
||||||
|
qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False)
|
||||||
|
else:
|
||||||
|
qkv_proj = torch.nn.Linear(0, 0, bias=False)
|
||||||
|
qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False)
|
||||||
|
qkv_proj.in_features = new_weight.size(1)
|
||||||
|
qkv_proj.out_features = new_weight.size(0)
|
||||||
|
module.qkv_proj = qkv_proj
|
||||||
|
|
||||||
|
del module.q_proj, module.k_proj, module.v_proj
|
||||||
|
|
||||||
|
|
||||||
|
def llama_attention_forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[Cache] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
**kwargs,
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||||
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
|
||||||
|
qkv = self.qkv_proj(hidden_states)
|
||||||
|
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
|
||||||
|
qkv = qkv.transpose(1, 2)
|
||||||
|
query_states, key_states, value_states = qkv.split([self.num_heads,
|
||||||
|
self.num_key_value_heads,
|
||||||
|
self.num_key_value_heads], dim=1)
|
||||||
|
|
||||||
|
past_key_value = getattr(self, "past_key_value", past_key_value)
|
||||||
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||||||
|
|
||||||
|
if past_key_value is not None:
|
||||||
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
||||||
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||||||
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||||
|
self.layer_idx, cache_kwargs)
|
||||||
|
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
|
if attention_mask is not None:
|
||||||
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||||||
|
else:
|
||||||
|
causal_mask = None
|
||||||
|
|
||||||
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||||
|
query_states,
|
||||||
|
key_states,
|
||||||
|
value_states,
|
||||||
|
attn_mask=causal_mask,
|
||||||
|
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
if not output_attentions:
|
||||||
|
attn_weights = None
|
||||||
|
|
||||||
|
return attn_output, attn_weights, past_key_value
|
||||||
Loading…
Reference in a new issue