LLM: Add qwen-vl gpu example (#9290)

* create qwen-vl gpu example.

* add readme.

* fix.

* change input figure and update outputs.

* add qwen-vl pytorch model gpu example.

* fix.

* add readme.
This commit is contained in:
Cengguang Zhang 2023-11-01 11:01:39 +08:00 committed by GitHub
parent 7e73c354a6
commit 9f3d4676c6
6 changed files with 356 additions and 0 deletions

View file

@ -149,6 +149,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/baichuan2) | | Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/baichuan2) |
| InternLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/internlm) | | InternLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/internlm) |
| Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen) | | Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen) |
| Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen-vl) |
| Aquila | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/aquila) | | Aquila | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/aquila) |
| MOSS | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/moss) | | | MOSS | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/moss) | |
| Whisper | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/whisper) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/whisper) | | Whisper | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/whisper) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/whisper) |

View file

@ -56,6 +56,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
| Baichuan2 | [link](example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](example/GPU/HF-Transformers-AutoModels/Model/baichuan2) | | Baichuan2 | [link](example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](example/GPU/HF-Transformers-AutoModels/Model/baichuan2) |
| InternLM | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](example/GPU/HF-Transformers-AutoModels/Model/internlm) | | InternLM | [link](example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](example/GPU/HF-Transformers-AutoModels/Model/internlm) |
| Qwen | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](example/GPU/HF-Transformers-AutoModels/Model/qwen) | | Qwen | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](example/GPU/HF-Transformers-AutoModels/Model/qwen) |
| Qwen-VL | [link](example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](example/GPU/HF-Transformers-AutoModels/Model/qwen-vl) |
| Aquila | [link](example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](example/GPU/HF-Transformers-AutoModels/Model/aquila) | | Aquila | [link](example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](example/GPU/HF-Transformers-AutoModels/Model/aquila) |
| MOSS | [link](example/CPU/HF-Transformers-AutoModels/Model/moss) | | | MOSS | [link](example/CPU/HF-Transformers-AutoModels/Model/moss) | |
| Whisper | [link](example/CPU/HF-Transformers-AutoModels/Model/whisper) | [link](example/GPU/HF-Transformers-AutoModels/Model/whisper) | | Whisper | [link](example/CPU/HF-Transformers-AutoModels/Model/whisper) | [link](example/GPU/HF-Transformers-AutoModels/Model/whisper) |

View file

@ -0,0 +1,78 @@
# Qwen-VL
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Qwen-VL models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat) as a reference Qwen-VL model.
## Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Multimodal chat using `chat()` API
In the example [chat.py](./chat.py), we show a basic use case for a Qwen-VL model to start a multimodal chat using `chat()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install accelerate tiktoken einops transformers_stream_generator==0.0.4 scipy torchvision pillow tensorboard matplotlib # additional package required for Qwen-VL-Chat to conduct generation
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
```
python ./chat.py
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen-VL model (e.g `Qwen/Qwen-VL-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen-VL-Chat'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
In every session, image and text can be entered into cmd (user can skip the input by type **'Enter'**) ; please type **'exit'** anytime you want to quit the dialouge.
Every image output will be named as the round of session and placed under the current directory.
#### Sample Chat
#### [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat)
```log
-------------------- Session 1 --------------------
Please input a picture: http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
Please enter the text: 这是什么?
---------- Response ----------
这是一张图片,展现了一个穿着粉色条纹连衣裙的小女孩,她手持一只穿粉色裙子的小熊。这个场景发生在一个户外环境,有砖块背景墙和花朵。
-------------------- Session 2 --------------------
Please input a picture:
Please enter the text: 这个小女孩多大了?
---------- Response ----------
根据图片中的描述这个小女孩应该是年龄较小的孩子但具体年龄难以确定。从她的外表来看可能是在5岁左右。。
-------------------- Session 3 --------------------
Please input a picture:
Please enter the text: 在图中检测框出玩具熊
---------- Response ----------
<ref>玩具熊</ref><box>(330,267),(603,869)</box>
-------------------- Session 4 --------------------
Please input a picture: exit
```
The sample input image in Session 1 is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>
The sample output image in Session 3 is:
<a href="https://llm-assets.readthedocs.io/en/latest/_images/qwen-vl-example-output-gpu.png"><img width=400px src="https://llm-assets.readthedocs.io/en/latest/_images/qwen-vl-example-output-gpu.png" ></a>

View file

@ -0,0 +1,98 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
import torch
from transformers import AutoTokenizer
from transformers.generation import GenerationConfig
from bigdl.llm.transformers import AutoModelForCausalLM
import intel_extension_for_pytorch as ipex
torch.manual_seed(1234)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for Qwen-VL model')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat",
help='The huggingface repo id for the Qwen-VL model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict')
current_path = os.path.dirname(os.path.abspath(__file__))
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
# For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
modules_to_not_convert=['c_fc', 'out_proj'])
model = model.to('xpu')
# Due to issue https://github.com/intel/intel-extension-for-pytorch/issues/454,
# currently put interpolation execution into cpu
def to_cpu(module, input, output):
return output.to("cpu")
def to_xpu(module, input):
return (input[0].to("xpu"),)
model.transformer.visual.ln_pre.register_forward_hook(to_cpu)
model.transformer.visual.transformer.register_forward_pre_hook(to_xpu)
# Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Session ID
session_id = 1
while True:
print('-'*20, 'Session %d' % session_id, '-'*20)
image_input = input(f' Please input a picture: ')
if image_input.lower() == 'exit' : # type 'exit' to quit the dialouge
break
text_input = input(f' Please enter the text: ')
if text_input.lower() == 'exit' : # type 'exit' to quit the dialouge
break
if session_id == 1:
history = None
all_input = [{'image': image_input}, {'text': text_input}]
input_list = [_input for _input in all_input if list(_input.values())[0] != '']
if len(input_list) == 0:
print("Input list should not be empty. Please try again with valid input.")
continue
query = tokenizer.from_list_format(input_list)
response, history = model.chat(tokenizer, query = query, history = history)
torch.xpu.synchronize()
print('-'*10, 'Response', '-'*10)
print(response, '\n')
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image is not None:
image.save(os.path.join(current_path, f'Session_{session_id}.png'), )
session_id += 1

View file

@ -0,0 +1,78 @@
# Qwen-VL
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Qwen-VL models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat) as a reference Qwen-VL model.
## Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Multimodal chat using `chat()` API
In the example [chat.py](./chat.py), we show a basic use case for a Qwen-VL model to start a multimodal chat using `chat()` API, with BigDL-LLM 'optimize_model' API on Intel GPUs.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install accelerate tiktoken einops transformers_stream_generator==0.0.4 scipy torchvision pillow tensorboard matplotlib # additional package required for Qwen-VL-Chat to conduct generation
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
```
python ./chat.py
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen-VL model (e.g `Qwen/Qwen-VL-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen-VL-Chat'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
In every session, image and text can be entered into cmd (user can skip the input by type **'Enter'**) ; please type **'exit'** anytime you want to quit the dialouge.
Every image output will be named as the round of session and placed under the current directory.
#### Sample Chat
#### [Qwen/Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat)
```log
-------------------- Session 1 --------------------
Please input a picture: http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
Please enter the text: 这是什么?
---------- Response ----------
这是一张图片,展现了一个穿着粉色条纹连衣裙的小女孩,她手持一只穿粉色裙子的小熊。这个场景发生在一个户外环境,有砖块背景墙和花朵。
-------------------- Session 2 --------------------
Please input a picture:
Please enter the text: 这个小女孩多大了?
---------- Response ----------
根据图片中的描述这个小女孩应该是年龄较小的孩子但具体年龄难以确定。从她的外表来看可能是在5岁左右。。
-------------------- Session 3 --------------------
Please input a picture:
Please enter the text: 在图中检测框出玩具熊
---------- Response ----------
<ref>玩具熊</ref><box>(330,267),(603,869)</box>
-------------------- Session 4 --------------------
Please input a picture: exit
```
The sample input image in Session 1 is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>
The sample output image in Session 3 is:
<a href="https://llm-assets.readthedocs.io/en/latest/_images/qwen-vl-example-output-gpu.png"><img width=400px src="https://llm-assets.readthedocs.io/en/latest/_images/qwen-vl-example-output-gpu.png" ></a>

View file

@ -0,0 +1,100 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
from bigdl.llm import optimize_model
import intel_extension_for_pytorch as ipex
torch.manual_seed(1234)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for Qwen-VL model')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat",
help='The huggingface repo id for the Qwen-VL model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict')
current_path = os.path.dirname(os.path.abspath(__file__))
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cpu", trust_remote_code=True)
# With only one line to enable BigDL-LLM optimization on model
# For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
model = optimize_model(model,
low_bit='sym_int4',
modules_to_not_convert=['c_fc', 'out_proj'])
model = model.to('xpu')
# Due to issue https://github.com/intel/intel-extension-for-pytorch/issues/454,
# currently put interpolation execution into cpu
def to_cpu(module, input, output):
return output.to("cpu")
def to_xpu(module, input):
return (input[0].to("xpu"),)
model.transformer.visual.ln_pre.register_forward_hook(to_cpu)
model.transformer.visual.transformer.register_forward_pre_hook(to_xpu)
# Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Session ID
session_id = 1
while True:
print('-'*20, 'Session %d' % session_id, '-'*20)
image_input = input(f' Please input a picture: ')
if image_input.lower() == 'exit' : # type 'exit' to quit the dialouge
break
text_input = input(f' Please enter the text: ')
if text_input.lower() == 'exit' : # type 'exit' to quit the dialouge
break
if session_id == 1:
history = None
all_input = [{'image': image_input}, {'text': text_input}]
input_list = [_input for _input in all_input if list(_input.values())[0] != '']
if len(input_list) == 0:
print("Input list should not be empty. Please try again with valid input.")
continue
query = tokenizer.from_list_format(input_list)
response, history = model.chat(tokenizer, query = query, history = history)
torch.xpu.synchronize()
print('-'*10, 'Response', '-'*10)
print(response, '\n')
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image is not None:
image.save(os.path.join(current_path, f'Session_{session_id}.png'), )
session_id += 1