Add openai-whisper pytorch gpu (#11736)
* Add openai-whisper pytorch gpu * Update README.md * Update README.md * fix typo * fix names update readme * Update README.md
This commit is contained in:
parent
7e61fa1af7
commit
9e65cf00b3
2 changed files with 201 additions and 0 deletions
|
|
@ -0,0 +1,142 @@
|
|||
# Whisper
|
||||
|
||||
In this directory, you will find examples of how to use IPEX-LLM to optimize OpenAI Whisper models within the `openai-whisper` Python library. For illustration purposes, we utilize the [whisper-tiny](https://github.com/openai/whisper/blob/main/model-card.md) as a reference Whisper model.
|
||||
|
||||
## Requirements
|
||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
|
||||
|
||||
## Example: Recognize Tokens using `transcribe()` API
|
||||
In the example [recognize.py](./recognize.py), we show a basic use case for a Whisper model to conduct transcription using `transcribe()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
|
||||
### 1. Install
|
||||
#### 1.1 Installation on Linux
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.11
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install -U openai-whisper
|
||||
pip install librosa # required by audio processing
|
||||
```
|
||||
|
||||
#### 1.2 Installation on Windows
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.11 libuv
|
||||
conda activate llm
|
||||
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install -U openai-whisper
|
||||
pip install librosa
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables for Linux
|
||||
|
||||
> [!NOTE]
|
||||
> Skip this step if you are running on Windows.
|
||||
|
||||
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
|
||||
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Runtime Configurations
|
||||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
|
||||
#### 3.1 Configurations for Linux
|
||||
<details>
|
||||
|
||||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
export SYCL_CACHE_PERSISTENT=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For Intel Data Center GPU Max Series</summary>
|
||||
|
||||
```bash
|
||||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
export SYCL_CACHE_PERSISTENT=1
|
||||
export ENABLE_SDP_FUSION=1
|
||||
```
|
||||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For Intel iGPU</summary>
|
||||
|
||||
```bash
|
||||
export SYCL_CACHE_PERSISTENT=1
|
||||
export BIGDL_LLM_XMX_DISABLED=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### 3.2 Configurations for Windows
|
||||
<details>
|
||||
|
||||
<summary>For Intel iGPU</summary>
|
||||
|
||||
```cmd
|
||||
set SYCL_CACHE_PERSISTENT=1
|
||||
set BIGDL_LLM_XMX_DISABLED=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>For Intel Arc™ A-Series Graphics</summary>
|
||||
|
||||
```cmd
|
||||
set SYCL_CACHE_PERSISTENT=1
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
> [!NOTE]
|
||||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||
### 4. Running examples
|
||||
|
||||
```bash
|
||||
python ./recognize.py --audio-file AUDIO_FILE
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--model-name MODEL_NAME`: argument defining the model name(tiny, medium, base, etc.) for the Whisper model to be downloaded. It is one of the official model names listed by `whisper.available_models()`, or path to a model checkpoint containing the model dimensions and the model state_dict. It is default to be `'tiny'`.
|
||||
- `--audio-file AUDIO_FILE`: argument defining the path of the audio file to be recognized.
|
||||
- `--language LANGUAGE`: argument defining language to be transcribed. It is default to be `english`.
|
||||
|
||||
> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||
>
|
||||
> Please select the appropriate size of the Whisper model based on the capabilities of your machine.
|
||||
|
||||
#### Sample Output
|
||||
#### [whisper-tiny](https://github.com/openai/whisper/blob/main/model-card.md)
|
||||
|
||||
For audio file(.wav) download from https://www.youtube.com/watch?v=-LIIf7E-qFI, it should be extracted as:
|
||||
```log
|
||||
[00:00.000 --> 00:10.000] I don't know who you are.
|
||||
[00:10.000 --> 00:15.000] I don't know what you want.
|
||||
[00:15.000 --> 00:21.000] If you're looking for ransom, I can tell you I don't know money, but what I do have.
|
||||
[00:21.000 --> 00:24.000] I'm a very particular set of skills.
|
||||
[00:24.000 --> 00:27.000] The skills I have acquired are very long career.
|
||||
[00:27.000 --> 00:31.000] The skills that make me a nightmare for people like you.
|
||||
[00:31.000 --> 00:35.000] If you let my daughter go now, that'll be the end of it.
|
||||
[00:35.000 --> 00:39.000] I will not look for you. I will not pursue you.
|
||||
[00:39.000 --> 00:45.000] But if you don't, I will look for you. I will find you.
|
||||
[00:45.000 --> 00:48.000] And I will kill you.
|
||||
[00:48.000 --> 00:53.000] Good luck.
|
||||
Inference time: xxxx s
|
||||
-------------------- Output --------------------
|
||||
I don't know who you are. I don't know what you want. If you're looking for ransom, I can tell you I don't know money, but what I do have. I'm a very particular set of skills. The skills I have acquired are very long career. The skills that make me a nightmare for people like you. If you let my daughter go now, that'll be the end of it. I will not look for you. I will not pursue you. But if you don't, I will look for you. I will find you. And I will kill you. Good luck.
|
||||
```
|
||||
|
|
@ -0,0 +1,59 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import whisper
|
||||
import time
|
||||
import librosa
|
||||
import argparse
|
||||
from ipex_llm import optimize_model
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Recognize Tokens using `transcribe()` API for Openai Whisper model')
|
||||
parser.add_argument('--model-name', type=str, default="tiny",
|
||||
help="The model name(tiny, medium, base, etc.) for the Whisper model to be downloaded."
|
||||
"It is one of the official model names listed by `whisper.available_models()`, or"
|
||||
"path to a model checkpoint containing the model dimensions and the model state_dict.")
|
||||
parser.add_argument('--audio-file', type=str, required=True,
|
||||
help='The path of the audio file to be recognized.')
|
||||
parser.add_argument('--language', type=str, default="English",
|
||||
help='language to be transcribed')
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load the input audio
|
||||
y, sr = librosa.load(args.audio_file)
|
||||
|
||||
# Downsample the audio to 16kHz
|
||||
target_sr = 16000
|
||||
audio = librosa.resample(y,
|
||||
orig_sr=sr,
|
||||
target_sr=target_sr)
|
||||
|
||||
# Load whisper model under pytorch framework
|
||||
model = whisper.load_model(args.model_name)
|
||||
|
||||
# With only one line to enable IPEX-LLM optimize on a pytorch model
|
||||
model = optimize_model(model)
|
||||
|
||||
model = model.to('xpu')
|
||||
|
||||
st = time.time()
|
||||
result = model.transcribe(audio, verbose=True, language=args.language)
|
||||
end = time.time()
|
||||
print(f'Inference time: {end-st} s')
|
||||
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(result["text"])
|
||||
Loading…
Reference in a new issue