From 9b475c07db23cf38bda12994ae8ed3fb6145a97c Mon Sep 17 00:00:00 2001 From: Yuwen Hu <54161268+Oscilloscope98@users.noreply.github.com> Date: Fri, 21 Jun 2024 12:28:26 +0800 Subject: [PATCH] Add missing ragflow quickstart in mddocs and update legecy contents (#11385) --- .../vllm_cpu_docker_quickstart.md | 20 +- docs/mddocs/Quickstart/index.md | 18 +- docs/mddocs/Quickstart/ragflow_quickstart.md | 278 ++++++++++++++++++ 3 files changed, 312 insertions(+), 4 deletions(-) create mode 100644 docs/mddocs/Quickstart/ragflow_quickstart.md diff --git a/docs/mddocs/DockerGuides/vllm_cpu_docker_quickstart.md b/docs/mddocs/DockerGuides/vllm_cpu_docker_quickstart.md index 231e7bfa..115da812 100644 --- a/docs/mddocs/DockerGuides/vllm_cpu_docker_quickstart.md +++ b/docs/mddocs/DockerGuides/vllm_cpu_docker_quickstart.md @@ -115,4 +115,22 @@ wrk -t8 -c8 -d15m -s payload-1024.lua http://localhost:8000/v1/completions --tim #### Offline benchmark through benchmark_vllm_throughput.py -Please refer to this [section](../Quickstart/vLLM_quickstart.md#5performing-benchmark) on how to use `benchmark_vllm_throughput.py` for benchmarking. +```bash +cd /llm +wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json + +source ipex-llm-init -t +export MODEL="YOUR_MODEL" + +python3 ./benchmark_vllm_throughput.py \ + --backend vllm \ + --dataset ./ShareGPT_V3_unfiltered_cleaned_split.json \ + --model $MODEL \ + --num-prompts 1000 \ + --seed 42 \ + --trust-remote-code \ + --enforce-eager \ + --dtype bfloat16 \ + --device cpu \ + --load-in-low-bit bf16 +``` diff --git a/docs/mddocs/Quickstart/index.md b/docs/mddocs/Quickstart/index.md index efbaa868..9e4fa976 100644 --- a/docs/mddocs/Quickstart/index.md +++ b/docs/mddocs/Quickstart/index.md @@ -5,12 +5,17 @@ This section includes efficient guide to show you how to: -- [`bigdl-llm` Migration Guide](./bigdl_llm_migration.md) +## Install + +- [``bigdl-llm`` Migration Guide](./bigdl_llm_migration.md) - [Install IPEX-LLM on Linux with Intel GPU](./install_linux_gpu.md) - [Install IPEX-LLM on Windows with Intel GPU](./install_windows_gpu.md) - [Install IPEX-LLM in Docker on Windows with Intel GPU](./docker_windows_gpu.md) -- [Run PyTorch Inference on Intel GPU using Docker (on Linux or WSL)](./docker_benchmark_quickstart.md) + +## Inference + - [Run Performance Benchmarking with IPEX-LLM](./benchmark_quickstart.md) +- [Run PyTorch Inference on Intel GPU using Docker (on Linux or WSL)](./docker_benchmark_quickstart.md) - [Run Local RAG using Langchain-Chatchat on Intel GPU](./chatchat_quickstart.md) - [Run Text Generation WebUI on Intel GPU](./webui_quickstart.md) - [Run Open WebUI on Intel GPU](./open_webui_with_ollama_quickstart.md) @@ -20,7 +25,14 @@ This section includes efficient guide to show you how to: - [Run llama.cpp with IPEX-LLM on Intel GPU](./llama_cpp_quickstart.md) - [Run Ollama with IPEX-LLM on Intel GPU](./ollama_quickstart.md) - [Run Llama 3 on Intel GPU using llama.cpp and ollama with IPEX-LLM](./llama3_llamacpp_ollama_quickstart.md) +- [Run RAGFlow with IPEX_LLM on Intel GPU](./ragflow_quickstart.md) + +## Serving + - [Run IPEX-LLM Serving with FastChat](./fastchat_quickstart.md) - [Run IPEX-LLM Serving with vLLM on Intel GPU](./vLLM_quickstart.md) -- [Finetune LLM with Axolotl on Intel GPU](./axolotl_quickstart.md) - [Run IPEX-LLM serving on Multiple Intel GPUs using DeepSpeed AutoTP and FastApi](./deepspeed_autotp_fastapi_quickstart.md) + +## Finetune + +- [Finetune LLM with Axolotl on Intel GPU](./axolotl_quickstart.md) \ No newline at end of file diff --git a/docs/mddocs/Quickstart/ragflow_quickstart.md b/docs/mddocs/Quickstart/ragflow_quickstart.md new file mode 100644 index 00000000..161831d9 --- /dev/null +++ b/docs/mddocs/Quickstart/ragflow_quickstart.md @@ -0,0 +1,278 @@ +# Run RAGFlow with IPEX-LLM on Intel GPU + +[RAGFlow](https://github.com/infiniflow/ragflow) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding; by integrating it with [`ipex-llm`](https://github.com/intel-analytics/ipex-llm), users can now easily leverage local LLMs running on Intel GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max). + + +*See the demo of ragflow running Qwen2:7B on Intel Arc A770 below.* + + + + +## Quickstart + +### 0 Prerequisites + +- CPU >= 4 cores +- RAM >= 16 GB +- Disk >= 50 GB +- Docker >= 24.0.0 & Docker Compose >= v2.26.1 + + +### 1. Install and Start `Ollama` Service on Intel GPU + +Follow the steps in [Run Ollama with IPEX-LLM on Intel GPU Guide](./ollama_quickstart.md) to install and run Ollama on Intel GPU. Ensure that `ollama serve` is running correctly and can be accessed through a local URL (e.g., `https://127.0.0.1:11434`) or a remote URL (e.g., `http://your_ip:11434`). + + + +```eval_rst +.. important:: + + If the `RAGFlow` is not deployed on the same machine where Ollama is running (which means `RAGFlow` needs to connect to a remote Ollama service), you must configure the Ollama service to accept connections from any IP address. To achieve this, set or export the environment variable `OLLAMA_HOST=0.0.0.0` before executing the command `ollama serve`. + +.. tip:: + + If your local LLM is running on Intel Arcâ„¢ A-Series Graphics with Linux OS (Kernel 6.2), it is recommended to additionaly set the following environment variable for optimal performance before executing `ollama serve`: + + .. code-block:: bash + + export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +``` + +### 2. Pull Model + +Now we need to pull a model for RAG using Ollama. Here we use [Qwen/Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) model as an example. Open a new terminal window, run the following command to pull [`qwen2:latest`](https://ollama.com/library/qwen2). + + +```eval_rst +.. tabs:: + .. tab:: Linux + + .. code-block:: bash + + export no_proxy=localhost,127.0.0.1 + ./ollama pull qwen2:latest + + .. tab:: Windows + + Please run the following command in Miniforge or Anaconda Prompt. + + .. code-block:: cmd + + set no_proxy=localhost,127.0.0.1 + ollama pull qwen2:latest + +.. seealso:: + + Besides Qwen2, there are other LLM models you might want to explore, such as Llama3, Phi3, Mistral, etc. You can find all available models in the `Ollama model library `_. Simply search for the model, pull it in a similar manner, and give it a try. +``` + +### 3. Start `RAGFlow` Service + + +```eval_rst +.. note:: + + The steps in section 3 is verified on Linux system only. +``` + + +#### 3.1 Download `RAGFlow` + +You can either clone the repository or download the source zip from [github](https://github.com/infiniflow/ragflow/archive/refs/heads/main.zip): + +```bash +$ git clone https://github.com/infiniflow/ragflow.git +``` + +#### 3.2 Environment Settings + +Ensure `vm.max_map_count` is set to at least 262144. To check the current value of `vm.max_map_count`, use: + +```bash +$ sysctl vm.max_map_count +``` + +##### Changing `vm.max_map_count` + +To set the value temporarily, use: + +```bash +$ sudo sysctl -w vm.max_map_count=262144 +``` + +To make the change permanent and ensure it persists after a reboot, add or update the following line in `/etc/sysctl.conf`: + +```bash +vm.max_map_count=262144 +``` + +### 3.3 Start the `RAGFlow` server using Docker + +Build the pre-built Docker images and start up the server: + +```eval_rst +.. note:: + + Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.7.0`, before running the following commands. +``` + + +```bash +$ export no_proxy=localhost,127.0.0.1 +$ cd ragflow/docker +$ chmod +x ./entrypoint.sh +$ docker compose up -d +``` + + +```eval_rst +.. note:: + + The core image is about 9 GB in size and may take a while to load. +``` + +Check the server status after having the server up and running: + +```bash +$ docker logs -f ragflow-server +``` + +Upon successful deployment, you will see logs in the terminal similar to the following: + +```bash + ____ ______ __ + / __ \ ____ _ ____ _ / ____// /____ _ __ + / /_/ // __ `// __ `// /_ / // __ \| | /| / / + / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ / +/_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/ + /____/ + +* Running on all addresses (0.0.0.0) +* Running on http://127.0.0.1:9380 +* Running on http://x.x.x.x:9380 +INFO:werkzeug:Press CTRL+C to quit +``` + + +You can now open a browser and access the RAGflow web portal. With the default settings, simply enter `http://IP_OF_YOUR_MACHINE` (without the port number), as the default HTTP serving port `80` can be omitted. If RAGflow is deployed on the same machine as your browser, you can also access the web portal at `http://127.0.0.1` or `http://localhost`. + + +### 4. Using `RAGFlow` + +```eval_rst +.. note:: + + For detailed information about how to use RAGFlow, visit the README of `RAGFlow official repository `_. + +``` + +#### Log-in + +If this is your first time using RAGFlow, you will need to register. After registering, log in with your new account to access the portal. + +
+ + + + + + +
+ + +#### Configure `Ollama` service URL + +Access the Ollama settings through **Settings -> Model Providers** in the menu. Fill out the **Base URL**, and then click the **OK** button at the bottom. + + + + + + +If the connection is successful, you will see the model listed down **Show more models** as illustrated below. + + + + + +```eval_rst +.. note:: + + If you want to use an Ollama server hosted at a different URL, simply update the **Ollama Base URL** to the new URL and press the **OK** button again to re-confirm the connection to Ollama. +``` + +#### Create Knowledge Base + +Go to **Knowledge Base** by clicking on **Knowledge Base** in the top bar. Click the **+Create knowledge base** button on the right. You will be prompted to input a name for the knowledge base. + + + + + + +#### Edit Knowledge Base + +After entering a name, you will be directed to edit the knowledge base. Click on **Dataset** on the left, then click **+ Add file -> Local files**. Upload your file in the pop-up window and click **OK**. + +
+ + + + + + +
+ +After the upload is successful, you will see a new record in the dataset. The _**Parsing Status**_ column will show `UNSTARTED`. Click the green start button in the _**Action**_ column to begin file parsing. Once parsing is finished, the _**Parsing Status**_ column will change to **SUCCESS**. + +
+ + + + + + +
+ + +Next, go to **Configuration** on the left menu and click **Save** at the bottom to save the changes. + + + + + +#### Chat with the Model + +Start new conversations by clicking **Chat** in the top navbar. + +On the left side, create a conversation by clicking **Create an Assistant**. Under **Assistant Setting**, give it a name and select your knowledge bases. + + + + + + + +Next, go to **Model Setting**, choose your model added by Ollama, and disable the **Max Tokens** toggle. Finally, click **OK** to start. + +```eval_rst +.. tip:: + + Enabling the **Max Tokens** toggle may result in very short answers. +``` + + + + + +
+ +Input your questions into the **Message Resume Assistant** textbox at the bottom, and click the button on the right to get responses. + + + + + +#### Exit + +To shut down the RAGFlow server, use **Ctrl+C** in the terminal where the Ragflow server is runing, then close your browser tab.