fix fuse mlp when using q5_0 or fp8 (#9689)
This commit is contained in:
parent
82ac2dbf55
commit
9a330bfc2b
2 changed files with 4 additions and 0 deletions
|
|
@ -26,6 +26,7 @@ from torch import nn
|
||||||
from torch.nn import functional as F
|
from torch.nn import functional as F
|
||||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||||
from bigdl.llm.utils.common import invalidInputError
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
|
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||||
from bigdl.llm.transformers.models.utils import rotate_half, apply_rotary_pos_emb
|
from bigdl.llm.transformers.models.utils import rotate_half, apply_rotary_pos_emb
|
||||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
||||||
|
|
@ -75,6 +76,7 @@ def baichuan_mlp_forward(
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
if x.shape[1] == 1 and x.dtype == torch.float32 and x.device.type == 'xpu' \
|
if x.shape[1] == 1 and x.dtype == torch.float32 and x.device.type == 'xpu' \
|
||||||
|
and self.gate_proj.qtype == ggml_tensor_qtype["sym_int4"] \
|
||||||
and not (self.training and x.requires_grad):
|
and not (self.training and x.requires_grad):
|
||||||
import linear_q4_0
|
import linear_q4_0
|
||||||
x_2d = x.view(-1, x.shape[-1])
|
x_2d = x.view(-1, x.shape[-1])
|
||||||
|
|
|
||||||
|
|
@ -39,6 +39,7 @@ except ImportError:
|
||||||
from bigdl.llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
|
from bigdl.llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
|
||||||
from bigdl.llm.transformers.models.utils import rotate_half
|
from bigdl.llm.transformers.models.utils import rotate_half
|
||||||
from bigdl.llm.utils.common import invalidInputError
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
|
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||||
|
|
||||||
apply_rotary_emb_func = None
|
apply_rotary_emb_func = None
|
||||||
|
|
||||||
|
|
@ -214,6 +215,7 @@ def qwen_attention_forward(
|
||||||
|
|
||||||
def qwen_mlp_forward(self, x: torch.Tensor) -> torch.Tensor:
|
def qwen_mlp_forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
if x.shape[1] == 1 and x.dtype == torch.float32 and x.device.type == 'xpu' \
|
if x.shape[1] == 1 and x.dtype == torch.float32 and x.device.type == 'xpu' \
|
||||||
|
and self.w2.qtype == ggml_tensor_qtype["sym_int4"] \
|
||||||
and not (self.training and x.requires_grad):
|
and not (self.training and x.requires_grad):
|
||||||
import linear_q4_0
|
import linear_q4_0
|
||||||
x_2d = x.view(-1, x.shape[-1])
|
x_2d = x.view(-1, x.shape[-1])
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue