[LLM] Enable BIGDL_OPT_IPEX in speculative baichuan2 13b example (#10028)

Enable BIGDL_OPT_IPEX in speculative baichuan2 13b example
This commit is contained in:
Xiangyu Tian 2024-01-30 17:11:37 +08:00 committed by GitHub
parent 226f398c2a
commit 9978089796
3 changed files with 45 additions and 1 deletions

View file

@ -60,3 +60,40 @@ Tokens generated 128
E2E Generation time x.xxxxs
First token latency x.xxxxs
```
### 4. Accelerate with BIGDL_OPT_IPEX
To accelerate speculative decoding on CPU, you can install our validated version of [IPEX 2.3.0+git0c63936](https://github.com/intel/intel-extension-for-pytorch/tree/0c63936d7a6740679987920367ae2e0cdb375b2e) by following steps: (Other versions of IPEX may have some conflicts and can not accelerate speculative decoding correctly.)
#### 4.1 Download IPEX installation script
```bash
# Depend on Conda and GCC 12.3
wget https://raw.githubusercontent.com/intel/intel-extension-for-pytorch/0c63936d7a6740679987920367ae2e0cdb375b2e/scripts/compile_bundle.sh
```
#### 4.2 Activate your conda environment
```bash
conda activate <your_conda_env>
```
#### 4.3 Set VER_IPEX in compile_bundle.sh to 0c63936d7a6740679987920367ae2e0cdb375b2e
```bash
sed -i 's/VER_IPEX=main/VER_IPEX=0c63936d7a6740679987920367ae2e0cdb375b2e/g' "compile_bundle.sh"
```
#### 4.4 Install IPEX and other dependencies
```bash
# Install IPEX 2.3.0+git0c63936
bash compile_bundle.sh
# Install other dependencies
pip install -r requirements.txt
```
After installed IPEX, you can set `BIGDL_OPT_IPEX=true` to get target model acceleration. Currently only `Baichuan2 13b` is supported.
```bash
source bigdl-llm-init -t
export BIGDL_OPT_IPEX=true
export OMP_NUM_THREADS=48 # you can change 48 here to #cores of one processor socket
numactl -C 0-47 -m 0 python ./speculative.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```

View file

@ -0,0 +1,2 @@
transformers==4.36.2
transformers-stream-generator

View file

@ -59,6 +59,7 @@ if __name__ == '__main__':
optimize_model=True,
torch_dtype=torch.bfloat16,
load_in_low_bit="bf16",
torchscript=True,
speculative=True,
trust_remote_code=True,
use_cache=True)
@ -67,11 +68,14 @@ if __name__ == '__main__':
with torch.inference_mode():
prompt = BAICHUAN_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer(prompt, return_tensors='pt').input_ids
inputs = tokenizer(prompt, return_tensors='pt', padding=True)
input_ids = inputs.input_ids.to(model.device)
attention_mask = inputs.attention_mask.to(model.device)
# warmup
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
attention_mask=attention_mask,
do_sample=False)
output_str = tokenizer.decode(output[0])
@ -79,6 +83,7 @@ if __name__ == '__main__':
st = time.perf_counter()
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
attention_mask=attention_mask,
do_sample=False)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
end = time.perf_counter()