Support fast rope for training (#9745)

* init

* init

* fix style

* add test and fix

* address comment

* update

* merge upstream main
This commit is contained in:
Yina Chen 2024-01-17 15:51:38 +08:00 committed by GitHub
parent 0c498a7b64
commit 98b86f83d4
6 changed files with 344 additions and 2 deletions

View file

@ -0,0 +1,67 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import logging
from bigdl.llm.transformers.xpu_customize_fwd import custom_fwd, custom_bwd
from bigdl.llm.utils.common import invalidInputError
LOG = logging.getLogger("bigdl.llm.rope_embedding")
# Fast RoPE for finetuning, split the q and k
def apply_fast_rope_embedding(q, k, position_ids, model_family):
if q.device.type != "xpu":
invalidInputError(False,
f"only xpu is supported in this function")
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
"mixtral"]:
q_embed = FastRopeEmbedding.apply(q, position_ids)
k_embed = FastRopeEmbedding.apply(k, position_ids)
return q_embed, k_embed
else:
invalidInputError(False,
f"{model_family} is not supported.")
# Fast RoPE for finetuning, split the q and k
class FastRopeEmbedding(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, x, position_ids):
import linear_q4_0
x_embed = torch.empty(x.shape, dtype=x.dtype, device=x.device)
linear_q4_0.apply_rotary_embedding_half_q_or_k(x, position_ids,
x_embed, False)
ctx.save_for_backward(position_ids)
return x_embed
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
import linear_q4_0
# LOG.info(f"backward, grad_output: {grad_output}")
position_ids, = ctx.saved_tensors
dx = torch.empty(grad_output.shape,
dtype=grad_output.dtype,
device=grad_output.device)
linear_q4_0.apply_rotary_embedding_half_q_or_k(grad_output,
position_ids,
dx,
True)
# LOG.info(f"backward, dx: {dx}, position_ids: {position_ids},
# requires_grad: {ctx.needs_input_grad}")
return dx, None

View file

@ -127,6 +127,15 @@ def should_use_fuse_rope(self, query_states, position_ids):
return use_fuse_rope
# Only for xpu and training
def should_use_fast_rope(self, query_states, position_ids):
use_fuse_rope = query_states.device.type == "xpu"
use_fuse_rope = use_fuse_rope and (self.training or query_states.requires_grad)
use_fuse_rope = use_fuse_rope and self.config.rope_scaling is None
use_fuse_rope = use_fuse_rope and position_ids is not None
return use_fuse_rope
def llama_attention_forward_4_31(
self,
hidden_states: torch.Tensor,
@ -911,3 +920,115 @@ def llama_model_selective_batching_forward_4_31(
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# For training
def llama_attention_fast_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
use_fast_rope = should_use_fast_rope(self, hidden_states, position_ids)
# Check for inference
if use_cache and past_key_value is not None and q_len == 1:
A, past_key_value = llama_attention_forward_4_31(
self,
hidden_states,
past_key_value,
position_ids,
)
return A, None, past_key_value
if self.config.pretraining_tp > 1:
key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
self.config.pretraining_tp)
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i])
for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i])
for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i])
for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if use_fast_rope:
from bigdl.llm.transformers.layers.rope_embedding import apply_fast_rope_embedding
query_states, key_states = apply_fast_rope_embedding(query_states,
key_states,
position_ids,
"llama")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "llama")
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
attention_mask,
bsz, q_len, kv_seq_len,
self.head_dim, self.num_heads)
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
if attn_output.size() != attn_output_size:
invalidInputError(False,
f"`attn_output` should be of size {attn_output_size},"
f" but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value

View file

@ -170,7 +170,7 @@ def apply_rotary_pos_emb_no_cache_xpu(q, k, position_ids, model_family):
k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
if model_family in ["llama", "baichuan", "internlm", "aquila", "gpt_neox", "mistral",
"mixtral"]:
linear_q4_0.apply_rotary_embedding_half_qk(q, k, position_ids, q_embed, k_embed)
linear_q4_0.apply_rotary_embedding_half_q_and_k(q, k, position_ids, q_embed, k_embed)
return q_embed, k_embed
else:
invalidInputError(False,

View file

@ -49,6 +49,7 @@
# limitations under the License.
import torch
import logging
from torch.nn import Linear, Embedding
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, BF16Linear, get_qk_size
from peft.tuners.lora import LoraLayer
@ -58,6 +59,8 @@ from bigdl.llm.ggml.quantize import ggml_tensor_qtype
import functools
from bigdl.llm.transformers import training_patch
LOG = logging.getLogger("bigdl.llm.qlora")
class LoraLowBitLinear(LowBitLinear, LoraLayer):
# Lora implemented in a dense layer
@ -252,6 +255,7 @@ def get_peft_model(*args, **kwargs):
if model.device.type == "xpu":
cast_lora_weight(model, torch.bfloat16)
_optimize_post(model)
torch.xpu.synchronize()
return model
@ -345,3 +349,18 @@ def cast_lora_weight(model, dtype=torch.bfloat16):
if hasattr(module, 'weight'):
if module.weight.dtype == torch.float32:
module = module.to(dtype)
def _optimize_post(model):
import transformers
from packaging import version
from bigdl.llm.transformers.convert import convert_forward
from bigdl.llm.transformers.models.llama import llama_attention_fast_forward
trans_version = transformers.__version__
if version.parse(trans_version) >= version.parse("4.31.0"):
LOG.info("Optimizing Llama finetuning....")
convert_forward(
model,
transformers.models.llama.modeling_llama.LlamaAttention,
llama_attention_fast_forward,)

View file

@ -0,0 +1,124 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# This file is adapted from
# https://github.com/Dao-AILab/flash-attention/blob/main/tests/layers/test_rotary.py
#
# Copyright (c) 2023, Tri Dao.
#
import os
import pytest
import torch
import intel_extension_for_pytorch as ipex
import torch.nn.functional as F
from einops import rearrange
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding
from transformers.models.llama.modeling_llama import (
apply_rotary_pos_emb as apply_rotary_pos_emb_llama,
)
from bigdl.llm.transformers.layers.rope_embedding import apply_fast_rope_embedding
device = os.environ['DEVICE']
print(f'Running on {device}')
if 'xpu' not in device:
print(f"The layer.fast_rope test should running on xpu")
# llama-style rotary embedding
@pytest.mark.parametrize("seqlen_offset", [0, 711])
@pytest.mark.parametrize("rotary_emb_fraction", [0.5, 1.0])
def test_rotary(rotary_emb_fraction, seqlen_offset):
device = "xpu"
dtype = torch.float16
rtol, atol = (1e-3, 5e-3)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen_total = 2048
seqlen = seqlen_total - seqlen_offset
seqlen_offset = torch.tensor([[seqlen_offset]], device=device)
nheads = 32
headdim = 128
rotary_dim = int(headdim * rotary_emb_fraction)
qkv = torch.randn(
batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
requires_grad=True
)
rotary_llama = LlamaRotaryEmbedding(rotary_dim, seqlen_total, device=device)
# Doesn't matter what tensor we pass in, rotary_llama only uses the device
# of the tensor
cos_llama, sin_llama = rotary_llama(qkv, seq_len=seqlen_total)
cos_llama, sin_llama = cos_llama.to(dtype=dtype), sin_llama.to(dtype=dtype)
q_pt = (
rearrange(qkv[:, :, 0, :, :rotary_dim], "b s h d -> b h s d")
.detach()
.clone()
.requires_grad_(True)
)
k_pt = (
rearrange(qkv[:, :, 1, :, :rotary_dim], "b s h d -> b h s d")
.detach()
.clone()
.requires_grad_(True)
)
q_pt_fast = (
rearrange(qkv[:, :, 0, :, :rotary_dim], "b s h d -> b h s d")
.detach()
.clone()
.requires_grad_(True)
)
k_pt_fast = (
rearrange(qkv[:, :, 1, :, :rotary_dim], "b s h d -> b h s d")
.detach()
.clone()
.requires_grad_(True)
)
q_llama, k_llama = apply_rotary_pos_emb_llama(q_pt, k_pt, cos_llama,
sin_llama, position_ids=seqlen_offset)
q_fast, k_fast = apply_fast_rope_embedding(q_pt_fast, k_pt_fast,
position_ids=seqlen_offset,
model_family="llama")
assert torch.allclose(
rearrange(q_llama, "b h s d -> b s h d"),
rearrange(q_fast, "b h s d -> b s h d"), rtol=rtol, atol=atol
)
assert torch.allclose(
rearrange(k_llama, "b h s d -> b s h d"),
rearrange(k_fast, "b h s d -> b s h d"), rtol=rtol, atol=atol
)
g = torch.randn_like(q_fast)
q_fast.backward(g)
k_fast.backward(g)
q_llama.backward(g)
k_llama.backward(g)
assert torch.allclose(
q_pt.grad,
q_pt_fast.grad,
rtol=rtol,
atol=atol,
)
assert torch.allclose(
k_pt.grad,
k_pt_fast.grad,
rtol=rtol,
atol=atol,
)
if __name__ == "__main__":
pytest.main([__file__])

View file

@ -22,5 +22,16 @@ pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api.py -v -s
now=$(date "+%s")
time=$((now-start))
echo "Bigdl-llm gpu tests finished"
echo "Bigdl-llm gpu inference tests finished"
echo "Time used:$time seconds"
echo "# Start testing layers.fast_rope_embedding"
start=$(date "+%s")
pytest ${LLM_INFERENCE_TEST_DIR}/test_layer_fast_rope.py -v -s
now=$(date "+%s")
time=$((now-start))
echo "Bigdl-llm gpu layers.fast_rope_embedding tests finished"
echo "Time used:$time seconds"