LLM: Add bloom gguf support (#9734)
* init * update bloom add merges * update * update readme * update for llama error * update
This commit is contained in:
		
							parent
							
								
									df775cf316
								
							
						
					
					
						commit
						984697afe2
					
				
					 6 changed files with 230 additions and 2 deletions
				
			
		| 
						 | 
				
			
			@ -6,6 +6,7 @@ In this directory, you will find examples on how to load GGUF model into `bigdl-
 | 
			
		|||
- [Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
 | 
			
		||||
- [Mixtral-8x7B-v0.1-GGUF](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
 | 
			
		||||
- [Baichuan2-7B-Chat-GGUF](https://huggingface.co/second-state/Baichuan2-7B-Chat-GGUF/tree/main)
 | 
			
		||||
- [Bloomz-7b1-GGUF](https://huggingface.co/hzjane/bloomz-7b1-gguf)
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#system-support) for more information.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -6,6 +6,7 @@ In this directory, you will find examples on how to load GGUF model into `bigdl-
 | 
			
		|||
- [Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
 | 
			
		||||
- [Mixtral-8x7B-v0.1-GGUF](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
 | 
			
		||||
- [Baichuan2-7B-Chat-GGUF](https://huggingface.co/second-state/Baichuan2-7B-Chat-GGUF/tree/main)
 | 
			
		||||
- [Bloomz-7b1-GGUF](https://huggingface.co/hzjane/bloomz-7b1-gguf)
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#system-support) for more information.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -54,6 +54,9 @@ def load_gguf_model(fpath: str, dtype: torch.dtype = torch.float):
 | 
			
		|||
        elif model_family == "baichuan":
 | 
			
		||||
            from .models.baichuan import load_gguf_baichuan
 | 
			
		||||
            model, tokenizer = load_gguf_baichuan(loader, dtype)
 | 
			
		||||
        elif model_family == "bloom":
 | 
			
		||||
            from .models.bloom import load_gguf_bloom
 | 
			
		||||
            model, tokenizer = load_gguf_bloom(loader, dtype)
 | 
			
		||||
        else:
 | 
			
		||||
            invalidInputError(False, f"Unsupported model family: {model_family}")
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -396,8 +396,15 @@ class GGUFFileLoader:
 | 
			
		|||
        spm_pb2 = import_protobuf("Failed to import protobuf")
 | 
			
		||||
 | 
			
		||||
        tokens = self.config['tokenizer.ggml.tokens']
 | 
			
		||||
        scores = self.config['tokenizer.ggml.scores']
 | 
			
		||||
        token_types = self.config['tokenizer.ggml.token_type']
 | 
			
		||||
        merges = None
 | 
			
		||||
        if 'tokenizer.ggml.scores' in self.config:
 | 
			
		||||
            scores = self.config['tokenizer.ggml.scores']
 | 
			
		||||
        elif self.config['tokenizer.ggml.model'] == "gpt2":
 | 
			
		||||
            merges = self.config['tokenizer.ggml.merges']
 | 
			
		||||
            scores = list(range(len(tokens)))
 | 
			
		||||
        else:
 | 
			
		||||
            invalidInputError(False, "Invalid configuration: 'scores' is not provided.")
 | 
			
		||||
 | 
			
		||||
        pieces = [
 | 
			
		||||
            spm_pb2.ModelProto.SentencePiece(
 | 
			
		||||
| 
						 | 
				
			
			@ -411,4 +418,7 @@ class GGUFFileLoader:
 | 
			
		|||
            )
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
        return pieces
 | 
			
		||||
        if merges is not None:
 | 
			
		||||
            return pieces, merges
 | 
			
		||||
        else:
 | 
			
		||||
            return pieces
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										128
									
								
								python/llm/src/bigdl/llm/transformers/gguf/models/bloom.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										128
									
								
								python/llm/src/bigdl/llm/transformers/gguf/models/bloom.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,128 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import os
 | 
			
		||||
from accelerate import init_empty_weights
 | 
			
		||||
from accelerate.utils import set_module_tensor_to_device
 | 
			
		||||
from transformers import BloomConfig, BloomForCausalLM, BloomTokenizerFast
 | 
			
		||||
 | 
			
		||||
from ..gguf import GGUFFileLoader
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def load_gguf_bloom(loader: GGUFFileLoader, dtype: torch.dtype = torch.float):
 | 
			
		||||
    config = loader.config
 | 
			
		||||
 | 
			
		||||
    bloom_config = BloomConfig(
 | 
			
		||||
        vocab_size=len(config['tokenizer.ggml.tokens']),
 | 
			
		||||
        hidden_size=config['bloom.embedding_length'],
 | 
			
		||||
        n_layer=config['bloom.block_count'],
 | 
			
		||||
        n_head=config['bloom.attention.head_count'],
 | 
			
		||||
        rms_norm_eps=config['bloom.attention.layer_norm_epsilon'],
 | 
			
		||||
        use_cache=True,
 | 
			
		||||
        pad_token_id=config['tokenizer.ggml.padding_token_id'],
 | 
			
		||||
        unknown_token_id=config['tokenizer.ggml.unknown_token_id'],
 | 
			
		||||
        bos_token_id=config['tokenizer.ggml.bos_token_id'],
 | 
			
		||||
        eos_token_id=config['tokenizer.ggml.eos_token_id'],
 | 
			
		||||
        pretraining_tp=1,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    ckpt = loader.tensors(dtype)
 | 
			
		||||
    n_head = config['bloom.attention.head_count']
 | 
			
		||||
    n_embed = config['bloom.embedding_length']
 | 
			
		||||
    ckpt = restore_bloom_weight(ckpt, n_head, n_embed)
 | 
			
		||||
 | 
			
		||||
    state_dict = {}
 | 
			
		||||
    state_dict['transformer.word_embeddings.weight'] = ckpt['token_embd.weight']
 | 
			
		||||
    state_dict['transformer.word_embeddings_layernorm.weight'] = ckpt['token_embd_norm.weight']
 | 
			
		||||
    state_dict['transformer.word_embeddings_layernorm.bias'] = ckpt['token_embd_norm.bias']
 | 
			
		||||
    state_dict['transformer.ln_f.weight'] = ckpt['output_norm.weight']
 | 
			
		||||
    state_dict['transformer.ln_f.bias'] = ckpt['output_norm.bias']
 | 
			
		||||
    state_dict['lm_head.weight'] = ckpt['output.weight']
 | 
			
		||||
    for i in range(config['bloom.block_count']):
 | 
			
		||||
        state_dict[f'transformer.h.{i}.self_attention.query_key_value.weight'] = \
 | 
			
		||||
            ckpt[f'blk.{i}.attn_qkv.weight']
 | 
			
		||||
        state_dict[f'transformer.h.{i}.self_attention.query_key_value.bias'] = \
 | 
			
		||||
            ckpt[f'blk.{i}.attn_qkv.bias']
 | 
			
		||||
        state_dict[f'transformer.h.{i}.self_attention.dense.weight'] = \
 | 
			
		||||
            ckpt[f'blk.{i}.attn_output.weight']
 | 
			
		||||
        state_dict[f'transformer.h.{i}.self_attention.dense.bias'] = \
 | 
			
		||||
            ckpt[f'blk.{i}.attn_output.bias']
 | 
			
		||||
        state_dict[f'transformer.h.{i}.post_attention_layernorm.weight'] = \
 | 
			
		||||
            ckpt[f'blk.{i}.ffn_norm.weight']
 | 
			
		||||
        state_dict[f'transformer.h.{i}.post_attention_layernorm.bias'] = \
 | 
			
		||||
            ckpt[f'blk.{i}.ffn_norm.bias']
 | 
			
		||||
        state_dict[f'transformer.h.{i}.mlp.dense_h_to_4h.weight'] = \
 | 
			
		||||
            ckpt[f'blk.{i}.ffn_up.weight']
 | 
			
		||||
        state_dict[f'transformer.h.{i}.mlp.dense_h_to_4h.bias'] = \
 | 
			
		||||
            ckpt[f'blk.{i}.ffn_up.bias']
 | 
			
		||||
        state_dict[f'transformer.h.{i}.mlp.dense_4h_to_h.weight'] = \
 | 
			
		||||
            ckpt[f'blk.{i}.ffn_down.weight']
 | 
			
		||||
        state_dict[f'transformer.h.{i}.mlp.dense_4h_to_h.bias'] = \
 | 
			
		||||
            ckpt[f'blk.{i}.ffn_down.bias']
 | 
			
		||||
        state_dict[f'transformer.h.{i}.input_layernorm.weight'] = \
 | 
			
		||||
            ckpt[f'blk.{i}.attn_norm.weight']
 | 
			
		||||
        state_dict[f'transformer.h.{i}.input_layernorm.bias'] = \
 | 
			
		||||
            ckpt[f'blk.{i}.attn_norm.bias']
 | 
			
		||||
 | 
			
		||||
    with init_empty_weights():
 | 
			
		||||
        model = BloomForCausalLM(bloom_config)
 | 
			
		||||
 | 
			
		||||
    for name, weight in state_dict.items():
 | 
			
		||||
        set_module_tensor_to_device(model, name, "cpu", weight, dtype=dtype)
 | 
			
		||||
    model = model.cpu()
 | 
			
		||||
 | 
			
		||||
    pieces, merges = loader.tokenizer_pieces()
 | 
			
		||||
 | 
			
		||||
    current_directory = os.path.dirname(os.path.abspath(__file__))
 | 
			
		||||
    token_file = current_directory + "/model_implement/bloom/tokenizer.json"
 | 
			
		||||
    import json
 | 
			
		||||
    with open(token_file, 'r') as file:
 | 
			
		||||
        data = json.load(file)
 | 
			
		||||
    vocab = {}
 | 
			
		||||
    # load and replace vocab and merges
 | 
			
		||||
    for i in range(len(pieces)):
 | 
			
		||||
        token = pieces[i].piece
 | 
			
		||||
        score = int(pieces[i].score)
 | 
			
		||||
        vocab[token] = score
 | 
			
		||||
    data['model']['vocab'] = vocab
 | 
			
		||||
    data['model']['merges'] = merges
 | 
			
		||||
    with open(token_file, 'w') as file:
 | 
			
		||||
        json.dump(data, file)
 | 
			
		||||
    tokenizer = BloomTokenizerFast(tokenizer_file=token_file)
 | 
			
		||||
    return model, tokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def restore_bloom_weight(ckpt: dict, n_head: int, n_embed: int):
 | 
			
		||||
    # see https://github.com/ggerganov/llama.cpp/
 | 
			
		||||
    # blob/master/convert-hf-to-gguf.py#L374
 | 
			
		||||
    import numpy as np
 | 
			
		||||
    for name, weight in ckpt.items():
 | 
			
		||||
        if name.endswith("attn_qkv.weight"):
 | 
			
		||||
            part1, part2, part3 = np.split(weight.reshape(-1, n_embed), 3, axis=0)
 | 
			
		||||
            part1 = part1.reshape((n_head, 1, n_embed // n_head, n_embed))
 | 
			
		||||
            part2 = part2.reshape((n_head, 1, n_embed // n_head, n_embed))
 | 
			
		||||
            part3 = part3.reshape((n_head, 1, n_embed // n_head, n_embed))
 | 
			
		||||
            data = torch.cat([part1, part2, part3], dim=1)
 | 
			
		||||
            ckpt[name] = data.reshape(-1, n_embed)
 | 
			
		||||
        elif name.endswith("attn_qkv.bias"):
 | 
			
		||||
            part1, part2, part3 = np.split(weight, 3, axis=0)
 | 
			
		||||
            part1 = part1.reshape((n_head, 1, n_embed // n_head))
 | 
			
		||||
            part2 = part2.reshape((n_head, 1, n_embed // n_head))
 | 
			
		||||
            part3 = part3.reshape((n_head, 1, n_embed // n_head))
 | 
			
		||||
            data = torch.cat([part1, part2, part3], dim=1)
 | 
			
		||||
            ckpt[name] = data.reshape(3 * n_embed, )
 | 
			
		||||
    return ckpt
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,85 @@
 | 
			
		|||
{
 | 
			
		||||
    "version": "1.0",
 | 
			
		||||
    "truncation": null,
 | 
			
		||||
    "padding": null,
 | 
			
		||||
    "added_tokens": [
 | 
			
		||||
        {
 | 
			
		||||
            "id": 0,
 | 
			
		||||
            "special": true,
 | 
			
		||||
            "content": "<unk>",
 | 
			
		||||
            "single_word": false,
 | 
			
		||||
            "lstrip": false,
 | 
			
		||||
            "rstrip": false,
 | 
			
		||||
            "normalized": false
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "id": 1,
 | 
			
		||||
            "special": true,
 | 
			
		||||
            "content": "<s>",
 | 
			
		||||
            "single_word": false,
 | 
			
		||||
            "lstrip": false,
 | 
			
		||||
            "rstrip": false,
 | 
			
		||||
            "normalized": false
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "id": 2,
 | 
			
		||||
            "special": true,
 | 
			
		||||
            "content": "</s>",
 | 
			
		||||
            "single_word": false,
 | 
			
		||||
            "lstrip": false,
 | 
			
		||||
            "rstrip": false,
 | 
			
		||||
            "normalized": false
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "id": 3,
 | 
			
		||||
            "special": true,
 | 
			
		||||
            "content": "<pad>",
 | 
			
		||||
            "single_word": false,
 | 
			
		||||
            "lstrip": false,
 | 
			
		||||
            "rstrip": false,
 | 
			
		||||
            "normalized": false
 | 
			
		||||
        }
 | 
			
		||||
    ],
 | 
			
		||||
    "normalizer": null,
 | 
			
		||||
    "pre_tokenizer": {
 | 
			
		||||
        "type": "Sequence",
 | 
			
		||||
        "pretokenizers": [
 | 
			
		||||
            {
 | 
			
		||||
                "type": "Split",
 | 
			
		||||
                "pattern": {
 | 
			
		||||
                    "Regex": " ?[^(\\s|[.,!?\u2026\u3002\uff0c\u3001\u0964\u06d4\u060c])]+"
 | 
			
		||||
                },
 | 
			
		||||
                "behavior": "Isolated",
 | 
			
		||||
                "invert": false
 | 
			
		||||
            },
 | 
			
		||||
            {
 | 
			
		||||
                "type": "ByteLevel",
 | 
			
		||||
                "add_prefix_space": false,
 | 
			
		||||
                "trim_offsets": true,
 | 
			
		||||
                "use_regex": false
 | 
			
		||||
            }
 | 
			
		||||
        ]
 | 
			
		||||
    },
 | 
			
		||||
    "post_processor": {
 | 
			
		||||
        "type": "ByteLevel",
 | 
			
		||||
        "add_prefix_space": true,
 | 
			
		||||
        "trim_offsets": false,
 | 
			
		||||
        "use_regex": false
 | 
			
		||||
    },
 | 
			
		||||
    "decoder": {
 | 
			
		||||
        "type": "ByteLevel",
 | 
			
		||||
        "add_prefix_space": true,
 | 
			
		||||
        "trim_offsets": true,
 | 
			
		||||
        "use_regex": false
 | 
			
		||||
    },
 | 
			
		||||
    "model": {
 | 
			
		||||
        "type": "BPE",
 | 
			
		||||
        "dropout": null,
 | 
			
		||||
        "unk_token": null,
 | 
			
		||||
        "continuing_subword_prefix": null,
 | 
			
		||||
        "end_of_word_suffix": null,
 | 
			
		||||
        "fuse_unk": false,
 | 
			
		||||
        "vocab": null,
 | 
			
		||||
        "merges": null
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
		Loading…
	
		Reference in a new issue