LLM: Add bloom gguf support (#9734)
* init * update bloom add merges * update * update readme * update for llama error * update
This commit is contained in:
parent
df775cf316
commit
984697afe2
6 changed files with 230 additions and 2 deletions
|
|
@ -6,6 +6,7 @@ In this directory, you will find examples on how to load GGUF model into `bigdl-
|
|||
- [Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
|
||||
- [Mixtral-8x7B-v0.1-GGUF](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
|
||||
- [Baichuan2-7B-Chat-GGUF](https://huggingface.co/second-state/Baichuan2-7B-Chat-GGUF/tree/main)
|
||||
- [Bloomz-7b1-GGUF](https://huggingface.co/hzjane/bloomz-7b1-gguf)
|
||||
|
||||
## Requirements
|
||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#system-support) for more information.
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@ In this directory, you will find examples on how to load GGUF model into `bigdl-
|
|||
- [Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF)
|
||||
- [Mixtral-8x7B-v0.1-GGUF](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
|
||||
- [Baichuan2-7B-Chat-GGUF](https://huggingface.co/second-state/Baichuan2-7B-Chat-GGUF/tree/main)
|
||||
- [Bloomz-7b1-GGUF](https://huggingface.co/hzjane/bloomz-7b1-gguf)
|
||||
|
||||
## Requirements
|
||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#system-support) for more information.
|
||||
|
|
|
|||
|
|
@ -54,6 +54,9 @@ def load_gguf_model(fpath: str, dtype: torch.dtype = torch.float):
|
|||
elif model_family == "baichuan":
|
||||
from .models.baichuan import load_gguf_baichuan
|
||||
model, tokenizer = load_gguf_baichuan(loader, dtype)
|
||||
elif model_family == "bloom":
|
||||
from .models.bloom import load_gguf_bloom
|
||||
model, tokenizer = load_gguf_bloom(loader, dtype)
|
||||
else:
|
||||
invalidInputError(False, f"Unsupported model family: {model_family}")
|
||||
|
||||
|
|
|
|||
|
|
@ -396,8 +396,15 @@ class GGUFFileLoader:
|
|||
spm_pb2 = import_protobuf("Failed to import protobuf")
|
||||
|
||||
tokens = self.config['tokenizer.ggml.tokens']
|
||||
scores = self.config['tokenizer.ggml.scores']
|
||||
token_types = self.config['tokenizer.ggml.token_type']
|
||||
merges = None
|
||||
if 'tokenizer.ggml.scores' in self.config:
|
||||
scores = self.config['tokenizer.ggml.scores']
|
||||
elif self.config['tokenizer.ggml.model'] == "gpt2":
|
||||
merges = self.config['tokenizer.ggml.merges']
|
||||
scores = list(range(len(tokens)))
|
||||
else:
|
||||
invalidInputError(False, "Invalid configuration: 'scores' is not provided.")
|
||||
|
||||
pieces = [
|
||||
spm_pb2.ModelProto.SentencePiece(
|
||||
|
|
@ -411,4 +418,7 @@ class GGUFFileLoader:
|
|||
)
|
||||
]
|
||||
|
||||
return pieces
|
||||
if merges is not None:
|
||||
return pieces, merges
|
||||
else:
|
||||
return pieces
|
||||
|
|
|
|||
128
python/llm/src/bigdl/llm/transformers/gguf/models/bloom.py
Normal file
128
python/llm/src/bigdl/llm/transformers/gguf/models/bloom.py
Normal file
|
|
@ -0,0 +1,128 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import os
|
||||
from accelerate import init_empty_weights
|
||||
from accelerate.utils import set_module_tensor_to_device
|
||||
from transformers import BloomConfig, BloomForCausalLM, BloomTokenizerFast
|
||||
|
||||
from ..gguf import GGUFFileLoader
|
||||
|
||||
|
||||
def load_gguf_bloom(loader: GGUFFileLoader, dtype: torch.dtype = torch.float):
|
||||
config = loader.config
|
||||
|
||||
bloom_config = BloomConfig(
|
||||
vocab_size=len(config['tokenizer.ggml.tokens']),
|
||||
hidden_size=config['bloom.embedding_length'],
|
||||
n_layer=config['bloom.block_count'],
|
||||
n_head=config['bloom.attention.head_count'],
|
||||
rms_norm_eps=config['bloom.attention.layer_norm_epsilon'],
|
||||
use_cache=True,
|
||||
pad_token_id=config['tokenizer.ggml.padding_token_id'],
|
||||
unknown_token_id=config['tokenizer.ggml.unknown_token_id'],
|
||||
bos_token_id=config['tokenizer.ggml.bos_token_id'],
|
||||
eos_token_id=config['tokenizer.ggml.eos_token_id'],
|
||||
pretraining_tp=1,
|
||||
)
|
||||
|
||||
ckpt = loader.tensors(dtype)
|
||||
n_head = config['bloom.attention.head_count']
|
||||
n_embed = config['bloom.embedding_length']
|
||||
ckpt = restore_bloom_weight(ckpt, n_head, n_embed)
|
||||
|
||||
state_dict = {}
|
||||
state_dict['transformer.word_embeddings.weight'] = ckpt['token_embd.weight']
|
||||
state_dict['transformer.word_embeddings_layernorm.weight'] = ckpt['token_embd_norm.weight']
|
||||
state_dict['transformer.word_embeddings_layernorm.bias'] = ckpt['token_embd_norm.bias']
|
||||
state_dict['transformer.ln_f.weight'] = ckpt['output_norm.weight']
|
||||
state_dict['transformer.ln_f.bias'] = ckpt['output_norm.bias']
|
||||
state_dict['lm_head.weight'] = ckpt['output.weight']
|
||||
for i in range(config['bloom.block_count']):
|
||||
state_dict[f'transformer.h.{i}.self_attention.query_key_value.weight'] = \
|
||||
ckpt[f'blk.{i}.attn_qkv.weight']
|
||||
state_dict[f'transformer.h.{i}.self_attention.query_key_value.bias'] = \
|
||||
ckpt[f'blk.{i}.attn_qkv.bias']
|
||||
state_dict[f'transformer.h.{i}.self_attention.dense.weight'] = \
|
||||
ckpt[f'blk.{i}.attn_output.weight']
|
||||
state_dict[f'transformer.h.{i}.self_attention.dense.bias'] = \
|
||||
ckpt[f'blk.{i}.attn_output.bias']
|
||||
state_dict[f'transformer.h.{i}.post_attention_layernorm.weight'] = \
|
||||
ckpt[f'blk.{i}.ffn_norm.weight']
|
||||
state_dict[f'transformer.h.{i}.post_attention_layernorm.bias'] = \
|
||||
ckpt[f'blk.{i}.ffn_norm.bias']
|
||||
state_dict[f'transformer.h.{i}.mlp.dense_h_to_4h.weight'] = \
|
||||
ckpt[f'blk.{i}.ffn_up.weight']
|
||||
state_dict[f'transformer.h.{i}.mlp.dense_h_to_4h.bias'] = \
|
||||
ckpt[f'blk.{i}.ffn_up.bias']
|
||||
state_dict[f'transformer.h.{i}.mlp.dense_4h_to_h.weight'] = \
|
||||
ckpt[f'blk.{i}.ffn_down.weight']
|
||||
state_dict[f'transformer.h.{i}.mlp.dense_4h_to_h.bias'] = \
|
||||
ckpt[f'blk.{i}.ffn_down.bias']
|
||||
state_dict[f'transformer.h.{i}.input_layernorm.weight'] = \
|
||||
ckpt[f'blk.{i}.attn_norm.weight']
|
||||
state_dict[f'transformer.h.{i}.input_layernorm.bias'] = \
|
||||
ckpt[f'blk.{i}.attn_norm.bias']
|
||||
|
||||
with init_empty_weights():
|
||||
model = BloomForCausalLM(bloom_config)
|
||||
|
||||
for name, weight in state_dict.items():
|
||||
set_module_tensor_to_device(model, name, "cpu", weight, dtype=dtype)
|
||||
model = model.cpu()
|
||||
|
||||
pieces, merges = loader.tokenizer_pieces()
|
||||
|
||||
current_directory = os.path.dirname(os.path.abspath(__file__))
|
||||
token_file = current_directory + "/model_implement/bloom/tokenizer.json"
|
||||
import json
|
||||
with open(token_file, 'r') as file:
|
||||
data = json.load(file)
|
||||
vocab = {}
|
||||
# load and replace vocab and merges
|
||||
for i in range(len(pieces)):
|
||||
token = pieces[i].piece
|
||||
score = int(pieces[i].score)
|
||||
vocab[token] = score
|
||||
data['model']['vocab'] = vocab
|
||||
data['model']['merges'] = merges
|
||||
with open(token_file, 'w') as file:
|
||||
json.dump(data, file)
|
||||
tokenizer = BloomTokenizerFast(tokenizer_file=token_file)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def restore_bloom_weight(ckpt: dict, n_head: int, n_embed: int):
|
||||
# see https://github.com/ggerganov/llama.cpp/
|
||||
# blob/master/convert-hf-to-gguf.py#L374
|
||||
import numpy as np
|
||||
for name, weight in ckpt.items():
|
||||
if name.endswith("attn_qkv.weight"):
|
||||
part1, part2, part3 = np.split(weight.reshape(-1, n_embed), 3, axis=0)
|
||||
part1 = part1.reshape((n_head, 1, n_embed // n_head, n_embed))
|
||||
part2 = part2.reshape((n_head, 1, n_embed // n_head, n_embed))
|
||||
part3 = part3.reshape((n_head, 1, n_embed // n_head, n_embed))
|
||||
data = torch.cat([part1, part2, part3], dim=1)
|
||||
ckpt[name] = data.reshape(-1, n_embed)
|
||||
elif name.endswith("attn_qkv.bias"):
|
||||
part1, part2, part3 = np.split(weight, 3, axis=0)
|
||||
part1 = part1.reshape((n_head, 1, n_embed // n_head))
|
||||
part2 = part2.reshape((n_head, 1, n_embed // n_head))
|
||||
part3 = part3.reshape((n_head, 1, n_embed // n_head))
|
||||
data = torch.cat([part1, part2, part3], dim=1)
|
||||
ckpt[name] = data.reshape(3 * n_embed, )
|
||||
return ckpt
|
||||
|
|
@ -0,0 +1,85 @@
|
|||
{
|
||||
"version": "1.0",
|
||||
"truncation": null,
|
||||
"padding": null,
|
||||
"added_tokens": [
|
||||
{
|
||||
"id": 0,
|
||||
"special": true,
|
||||
"content": "<unk>",
|
||||
"single_word": false,
|
||||
"lstrip": false,
|
||||
"rstrip": false,
|
||||
"normalized": false
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"special": true,
|
||||
"content": "<s>",
|
||||
"single_word": false,
|
||||
"lstrip": false,
|
||||
"rstrip": false,
|
||||
"normalized": false
|
||||
},
|
||||
{
|
||||
"id": 2,
|
||||
"special": true,
|
||||
"content": "</s>",
|
||||
"single_word": false,
|
||||
"lstrip": false,
|
||||
"rstrip": false,
|
||||
"normalized": false
|
||||
},
|
||||
{
|
||||
"id": 3,
|
||||
"special": true,
|
||||
"content": "<pad>",
|
||||
"single_word": false,
|
||||
"lstrip": false,
|
||||
"rstrip": false,
|
||||
"normalized": false
|
||||
}
|
||||
],
|
||||
"normalizer": null,
|
||||
"pre_tokenizer": {
|
||||
"type": "Sequence",
|
||||
"pretokenizers": [
|
||||
{
|
||||
"type": "Split",
|
||||
"pattern": {
|
||||
"Regex": " ?[^(\\s|[.,!?\u2026\u3002\uff0c\u3001\u0964\u06d4\u060c])]+"
|
||||
},
|
||||
"behavior": "Isolated",
|
||||
"invert": false
|
||||
},
|
||||
{
|
||||
"type": "ByteLevel",
|
||||
"add_prefix_space": false,
|
||||
"trim_offsets": true,
|
||||
"use_regex": false
|
||||
}
|
||||
]
|
||||
},
|
||||
"post_processor": {
|
||||
"type": "ByteLevel",
|
||||
"add_prefix_space": true,
|
||||
"trim_offsets": false,
|
||||
"use_regex": false
|
||||
},
|
||||
"decoder": {
|
||||
"type": "ByteLevel",
|
||||
"add_prefix_space": true,
|
||||
"trim_offsets": true,
|
||||
"use_regex": false
|
||||
},
|
||||
"model": {
|
||||
"type": "BPE",
|
||||
"dropout": null,
|
||||
"unk_token": null,
|
||||
"continuing_subword_prefix": null,
|
||||
"end_of_word_suffix": null,
|
||||
"fuse_unk": false,
|
||||
"vocab": null,
|
||||
"merges": null
|
||||
}
|
||||
}
|
||||
Loading…
Reference in a new issue