refactor baichuan2-7b (#11062)
This commit is contained in:
parent
84239d0bd3
commit
981d668be6
2 changed files with 139 additions and 287 deletions
|
|
@ -710,6 +710,12 @@ def _optimize_pre(model):
|
||||||
model.apply(pre_compute_inv_freq)
|
model.apply(pre_compute_inv_freq)
|
||||||
from ipex_llm.transformers.models.phi3 import split_mlp
|
from ipex_llm.transformers.models.phi3 import split_mlp
|
||||||
model.apply(split_mlp)
|
model.apply(split_mlp)
|
||||||
|
# for baichuan2
|
||||||
|
if model.config.model_type == "baichuan" and model.config.vocab_size == 125696:
|
||||||
|
if model.config.hidden_size in [4096, 2048]:
|
||||||
|
# baichuan2-7B
|
||||||
|
from ipex_llm.transformers.models.baichuan2 import pre_compute_inv_freq
|
||||||
|
model.apply(pre_compute_inv_freq)
|
||||||
if model.config.model_type == "qwen":
|
if model.config.model_type == "qwen":
|
||||||
rope_base = model.config.rotary_emb_base
|
rope_base = model.config.rotary_emb_base
|
||||||
from accelerate.big_modeling import init_empty_weights
|
from accelerate.big_modeling import init_empty_weights
|
||||||
|
|
|
||||||
|
|
@ -23,50 +23,30 @@ from typing import Optional, Tuple
|
||||||
import torch
|
import torch
|
||||||
import torch.utils.checkpoint
|
import torch.utils.checkpoint
|
||||||
from torch.nn import functional as F
|
from torch.nn import functional as F
|
||||||
from ipex_llm.ggml.quantize import ggml_tensor_qtype
|
|
||||||
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
|
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
|
||||||
restore_fp8_kv_cache, use_quantize_kv_cache
|
restore_fp8_kv_cache, use_quantize_kv_cache
|
||||||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
|
||||||
append_kv_cache, is_enough_kv_cache_room_4_31
|
append_kv_cache, is_enough_kv_cache_room_4_31
|
||||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp
|
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
||||||
|
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal
|
||||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU
|
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU
|
||||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
|
||||||
from ipex_llm.transformers.models.utils import mlp_fusion_check
|
from ipex_llm.transformers.models.utils import mlp_fusion_check
|
||||||
from ipex_llm.utils.common.log4Error import invalidInputError
|
import warnings
|
||||||
from transformers.utils import logging
|
|
||||||
logger = logging.get_logger(__name__)
|
|
||||||
|
|
||||||
try:
|
|
||||||
from xformers import ops as xops
|
|
||||||
except ImportError:
|
|
||||||
xops = None
|
|
||||||
logger.warning(
|
|
||||||
"Xformers is not installed correctly. If you want to use memory_efficient_attention to "
|
|
||||||
"accelerate training use the following command to install Xformers\npip install xformers."
|
|
||||||
)
|
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
|
||||||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
|
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
|
||||||
|
|
||||||
|
|
||||||
def should_split_qkv_tensor(query_states, bsz, num_heads, q_len, kv_seq_len, output_attentions):
|
def pre_compute_inv_freq(module: torch.nn.Module):
|
||||||
if not output_attentions:
|
if module.__class__.__name__ == "RotaryEmbedding":
|
||||||
if os.environ.get("IPEX_LLM_SPLIT_QKV", None) is not None:
|
inv_freq = module.inv_freq
|
||||||
return os.environ.get("IPEX_LLM_SPLIT_QKV", None) == "1"
|
del module.inv_freq
|
||||||
elif query_states.dtype == torch.float16 and \
|
module.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||||
query_states.shape[2] >= 5400:
|
|
||||||
# split tensor for memory block limitation
|
|
||||||
# support fp16 and set input length threshold at 5400 for now
|
|
||||||
return True
|
|
||||||
elif query_states.element_size()*bsz*num_heads*q_len*kv_seq_len >= 4*1024**3:
|
|
||||||
# attn_weight size larger than memory block limitation 4GB
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
|
|
||||||
def baichuan_13b_rms_norm_forward(self, hidden_states):
|
def baichuan_13b_rms_norm_forward(self, hidden_states):
|
||||||
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
if hidden_states.device.type == "xpu" and not (self.training or hidden_states.requires_grad):
|
||||||
import linear_q4_0
|
import linear_q4_0
|
||||||
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
|
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
|
||||||
output = linear_q4_0.rms_norm(self.weight, x_2d, self.epsilon)
|
output = linear_q4_0.rms_norm(self.weight, x_2d, self.epsilon)
|
||||||
|
|
@ -105,95 +85,117 @@ def baichuan_attention_forward_7b(
|
||||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||||
output_attentions: bool = False,
|
output_attentions: bool = False,
|
||||||
use_cache: bool = False,
|
use_cache: bool = False,
|
||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
):
|
||||||
if use_quantize_kv_cache(self.W_pack, hidden_states):
|
|
||||||
forward_function = baichuan_attention_forward_7b_quantized
|
|
||||||
else:
|
|
||||||
forward_function = baichuan_attention_forward_7b_origin
|
|
||||||
return forward_function(
|
|
||||||
self=self,
|
|
||||||
hidden_states=hidden_states,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
position_ids=position_ids,
|
|
||||||
past_key_value=past_key_value,
|
|
||||||
output_attentions=output_attentions,
|
|
||||||
use_cache=use_cache
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def baichuan_attention_forward_7b_quantized(
|
|
||||||
self,
|
|
||||||
hidden_states: torch.Tensor,
|
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
|
||||||
position_ids: Optional[torch.LongTensor] = None,
|
|
||||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
||||||
output_attentions: bool = False,
|
|
||||||
use_cache: bool = False,
|
|
||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
||||||
bsz, q_len, _ = hidden_states.size()
|
bsz, q_len, _ = hidden_states.size()
|
||||||
device = hidden_states.device
|
device = hidden_states.device
|
||||||
|
|
||||||
proj = self.W_pack(hidden_states)
|
qkv = self.W_pack(hidden_states)
|
||||||
proj = torch.chunk(proj, 3, -1)
|
qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim)
|
||||||
# batch_size x source_len x hidden_size
|
qkv = qkv.transpose(1, 2)
|
||||||
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
query_states, key_states, value_states = qkv.split([self.num_heads,
|
||||||
# batch_size x target_len x head_size
|
self.num_heads,
|
||||||
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
self.num_heads], dim=1)
|
||||||
# batch_size x source_len x hidden_size
|
|
||||||
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
||||||
|
|
||||||
kv_seq_len = key_states.shape[-2]
|
kv_seq_len = key_states.shape[2]
|
||||||
if past_key_value is not None:
|
if past_key_value is not None:
|
||||||
kv_seq_len += past_key_value[0].shape[-2]
|
kv_seq_len += past_key_value[0].shape[2]
|
||||||
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
|
|
||||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
# IPEX-LLM OPT: fuse rope
|
||||||
key_states,
|
if should_use_fuse_rope(hidden_states, position_ids, self.training):
|
||||||
position_ids,
|
import linear_q4_0
|
||||||
"baichuan")
|
linear_q4_0.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
|
||||||
|
query_states, key_states)
|
||||||
else:
|
else:
|
||||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||||
cos, sin, position_ids, "baichuan")
|
cos, sin, position_ids, "baichuan")
|
||||||
if past_key_value is None:
|
query_states = query_states.to(hidden_states.dtype)
|
||||||
kv_seq_len = key_states.shape[-2]
|
key_states = key_states.to(hidden_states.dtype)
|
||||||
k_cache, v_cache = init_fp8_kv_cache(
|
|
||||||
bsz, self.num_heads, kv_seq_len, self.head_dim,
|
# IPEX-LLM OPT: kv cache and quantize kv
|
||||||
device=device
|
use_quantize_kv = use_quantize_kv_cache(self.W_pack, hidden_states)
|
||||||
)
|
if use_quantize_kv:
|
||||||
|
if past_key_value is None:
|
||||||
|
k_cache, v_cache = init_fp8_kv_cache(
|
||||||
|
bsz, self.num_heads, kv_seq_len, self.head_dim,
|
||||||
|
device=device
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
k_cache, v_cache = past_key_value
|
||||||
|
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
|
||||||
|
key_states, value_states)
|
||||||
else:
|
else:
|
||||||
k_cache, v_cache = past_key_value
|
if past_key_value is None:
|
||||||
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
|
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||||
key_states, value_states)
|
k_cache, v_cache = init_kv_cache(bsz,
|
||||||
|
self.num_heads,
|
||||||
|
self.head_dim,
|
||||||
|
kv_seq_len,
|
||||||
|
max_cache_length,
|
||||||
|
dtype=key_states.dtype,
|
||||||
|
device=device)
|
||||||
|
k_cache[...] = key_states
|
||||||
|
v_cache[...] = value_states
|
||||||
|
key_states = k_cache
|
||||||
|
value_states = v_cache
|
||||||
|
else:
|
||||||
|
k_cache, v_cache = past_key_value
|
||||||
|
if k_cache.stride(1) < kv_seq_len * k_cache.size(3):
|
||||||
|
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||||
|
new_k_cache, new_v_cache = extend_kv_cache(bsz,
|
||||||
|
self.num_heads,
|
||||||
|
self.head_dim,
|
||||||
|
k_cache.size(2),
|
||||||
|
max_cache_length,
|
||||||
|
dtype=k_cache.dtype,
|
||||||
|
device=device)
|
||||||
|
new_k_cache[...] = k_cache
|
||||||
|
new_v_cache[...] = v_cache
|
||||||
|
k_cache = new_k_cache
|
||||||
|
v_cache = new_v_cache
|
||||||
|
key_states, value_states = append_kv_cache(k_cache, v_cache, key_states, value_states)
|
||||||
|
|
||||||
past_key_value = (key_states, value_states) if use_cache else None
|
past_key_value = (key_states, value_states) if use_cache else None
|
||||||
|
|
||||||
invalidInputError(attention_mask is None or attention_mask.dtype != torch.bool,
|
if self.training:
|
||||||
"attention_mask's dtype cannot be bool")
|
warnings.warn("xops is not supported on Intel GPU, so just use normal implementation")
|
||||||
|
|
||||||
scaling_factor = 1 / math.sqrt(query_states.size(-1))
|
attn_weights = None
|
||||||
if query_states.size(2) != 1 or device.type != 'xpu':
|
if not self.training and not hidden_states.requires_grad and \
|
||||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
use_flash_attention(query_states, key_states, attention_mask):
|
||||||
query_states.dtype)
|
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
|
||||||
if should_split_qkv_tensor(query_states, bsz, self.num_heads,
|
key_states.to(dtype=torch.float16),
|
||||||
q_len, kv_seq_len, output_attentions):
|
value_states.to(dtype=torch.float16),
|
||||||
attn_output, attn_weights = native_sdp_split_qkv_tensor(query_states, key_states,
|
is_causal=True).to(hidden_states.dtype)
|
||||||
value_states, attention_mask)
|
elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||||
else:
|
|
||||||
attn_output = torch.matmul(query_states * scaling_factor, key_states.transpose(-2, -1))
|
|
||||||
|
|
||||||
if attention_mask is not None:
|
|
||||||
attn_output += attention_mask
|
|
||||||
attn_output = torch.softmax(attn_output, -1)
|
|
||||||
attn_output = attn_output.to(hidden_states.dtype)
|
|
||||||
attn_output = torch.matmul(attn_output, value_states)
|
|
||||||
else:
|
|
||||||
import linear_q4_0
|
import linear_q4_0
|
||||||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
if use_quantize_kv:
|
||||||
attention_mask)
|
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
|
||||||
attn_weights = None
|
attention_mask)
|
||||||
attn_output = attn_output.transpose(1, 2)
|
else:
|
||||||
|
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
||||||
|
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||||
|
import linear_q4_0
|
||||||
|
if use_quantize_kv:
|
||||||
|
attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
|
||||||
|
else:
|
||||||
|
attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
|
||||||
|
else:
|
||||||
|
if use_quantize_kv:
|
||||||
|
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||||
|
query_states.dtype)
|
||||||
|
attn_weights = torch.matmul(query_states,
|
||||||
|
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||||
|
if attention_mask is not None:
|
||||||
|
attn_weights = attn_weights + attention_mask
|
||||||
|
# upcast attention to fp32
|
||||||
|
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
||||||
|
dtype=torch.float32).to(value_states.dtype)
|
||||||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
||||||
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
|
|
||||||
attn_output = self.o_proj(attn_output)
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
if not output_attentions:
|
if not output_attentions:
|
||||||
|
|
@ -202,134 +204,6 @@ def baichuan_attention_forward_7b_quantized(
|
||||||
return attn_output, attn_weights, past_key_value
|
return attn_output, attn_weights, past_key_value
|
||||||
|
|
||||||
|
|
||||||
def baichuan_attention_forward_7b_origin(
|
|
||||||
self,
|
|
||||||
hidden_states: torch.Tensor,
|
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
|
||||||
position_ids: Optional[torch.LongTensor] = None,
|
|
||||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
||||||
output_attentions: bool = False,
|
|
||||||
use_cache: bool = False,
|
|
||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
||||||
bsz, q_len, _ = hidden_states.size()
|
|
||||||
device = hidden_states.device
|
|
||||||
|
|
||||||
proj = self.W_pack(hidden_states)
|
|
||||||
proj = torch.chunk(proj, 3, -1)
|
|
||||||
# batch_size x source_len x hidden_size
|
|
||||||
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
||||||
# batch_size x target_len x head_size
|
|
||||||
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
||||||
# batch_size x source_len x hidden_size
|
|
||||||
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
||||||
|
|
||||||
kv_seq_len = key_states.shape[-2]
|
|
||||||
enough_kv_room = True
|
|
||||||
if past_key_value is not None:
|
|
||||||
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len)
|
|
||||||
kv_seq_len += past_key_value[0].shape[-2]
|
|
||||||
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
|
|
||||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
|
||||||
key_states,
|
|
||||||
position_ids,
|
|
||||||
"baichuan")
|
|
||||||
else:
|
|
||||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
||||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
|
||||||
cos, sin, position_ids, "baichuan")
|
|
||||||
# [bsz, nh, t, hd]
|
|
||||||
|
|
||||||
# if past_key_value is not None:
|
|
||||||
# # reuse k, v, self_attention
|
|
||||||
# key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
|
||||||
# value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
|
||||||
if past_key_value is not None:
|
|
||||||
# reuse k, v, self_attention
|
|
||||||
cache_k = past_key_value[0]
|
|
||||||
cache_v = past_key_value[1]
|
|
||||||
if not enough_kv_room:
|
|
||||||
# allocate new
|
|
||||||
new_cache_k, new_cache_v = extend_kv_cache(bsz,
|
|
||||||
self.num_heads,
|
|
||||||
self.head_dim,
|
|
||||||
cache_k.size(2),
|
|
||||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
|
||||||
dtype=cache_k.dtype,
|
|
||||||
device=device)
|
|
||||||
new_cache_k[:] = cache_k
|
|
||||||
new_cache_v[:] = cache_v
|
|
||||||
cache_k = new_cache_k
|
|
||||||
cache_v = new_cache_v
|
|
||||||
|
|
||||||
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
|
|
||||||
|
|
||||||
elif use_cache:
|
|
||||||
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
|
||||||
new_key_states, new_value_states = init_kv_cache(bsz,
|
|
||||||
self.num_heads,
|
|
||||||
self.head_dim,
|
|
||||||
kv_seq_len,
|
|
||||||
max_cache_length,
|
|
||||||
dtype=key_states.dtype,
|
|
||||||
device=device)
|
|
||||||
new_key_states[:] = key_states
|
|
||||||
new_value_states[:] = value_states
|
|
||||||
key_states = new_key_states
|
|
||||||
value_states = new_value_states
|
|
||||||
|
|
||||||
past_key_value = (key_states, value_states) if use_cache else None
|
|
||||||
|
|
||||||
invalidInputError(attention_mask is None or attention_mask.dtype != torch.bool,
|
|
||||||
"attention_mask's dtype cannot be bool")
|
|
||||||
|
|
||||||
if xops is not None and self.training:
|
|
||||||
attn_weights = None
|
|
||||||
query_states = query_states.transpose(1, 2)
|
|
||||||
key_states = key_states.transpose(1, 2)
|
|
||||||
value_states = value_states.transpose(1, 2)
|
|
||||||
attn_output = xops.memory_efficient_attention(
|
|
||||||
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
if not self.training and not hidden_states.requires_grad and \
|
|
||||||
use_flash_attention(query_states, key_states, attention_mask):
|
|
||||||
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
|
|
||||||
key_states.to(dtype=torch.float16),
|
|
||||||
value_states.to(dtype=torch.float16),
|
|
||||||
is_causal=True)
|
|
||||||
attn_weights = None
|
|
||||||
elif not self.training and not hidden_states.requires_grad and \
|
|
||||||
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
|
||||||
import linear_q4_0
|
|
||||||
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
|
|
||||||
attn_output = attn_output.view(query_states.shape)
|
|
||||||
attn_weights = None
|
|
||||||
else:
|
|
||||||
if should_split_qkv_tensor(query_states, bsz, self.num_heads,
|
|
||||||
q_len, kv_seq_len, output_attentions):
|
|
||||||
attn_output, attn_weights = native_sdp_split_qkv_tensor(query_states,
|
|
||||||
key_states,
|
|
||||||
value_states,
|
|
||||||
attention_mask)
|
|
||||||
else:
|
|
||||||
scaling_factor = 1 / math.sqrt(query_states.size(-1))
|
|
||||||
attn_output = torch.matmul(query_states * scaling_factor,
|
|
||||||
key_states.transpose(-2, -1))
|
|
||||||
if attention_mask is not None:
|
|
||||||
attn_output += attention_mask
|
|
||||||
attn_output = torch.softmax(attn_output, -1)
|
|
||||||
attn_output = torch.matmul(attn_output, value_states)
|
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2)
|
|
||||||
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
|
|
||||||
attn_output = self.o_proj(attn_output)
|
|
||||||
|
|
||||||
if not output_attentions:
|
|
||||||
attn_weights = None
|
|
||||||
|
|
||||||
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value
|
|
||||||
|
|
||||||
|
|
||||||
def baichuan_attention_forward_13b(
|
def baichuan_attention_forward_13b(
|
||||||
self,
|
self,
|
||||||
hidden_states: torch.Tensor,
|
hidden_states: torch.Tensor,
|
||||||
|
|
@ -507,48 +381,38 @@ def baichuan_attention_forward_13b_origin(
|
||||||
value_states = new_value_states
|
value_states = new_value_states
|
||||||
|
|
||||||
past_key_value = (key_states, value_states) if use_cache else None
|
past_key_value = (key_states, value_states) if use_cache else None
|
||||||
if xops is not None and self.training:
|
|
||||||
attn_weights = None
|
|
||||||
# query_states = query_states.transpose(1, 2)
|
|
||||||
# key_states = key_states.transpose(1, 2)
|
|
||||||
# value_states = value_states.transpose(1, 2)
|
|
||||||
# attn_output = xops.memory_efficient_attention(
|
|
||||||
# query_states, key_states, value_states, attn_bias=attention_mask
|
|
||||||
# )
|
|
||||||
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True,
|
|
||||||
enable_mem_efficient=True):
|
|
||||||
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states,
|
|
||||||
attn_mask=attention_mask)
|
|
||||||
attn_output = attn_output.transpose(1, 2)
|
|
||||||
else:
|
|
||||||
attn_weights = torch.matmul(
|
|
||||||
query_states.to(dtype=key_states.dtype), key_states.transpose(2, 3)
|
|
||||||
) / math.sqrt(self.head_dim)
|
|
||||||
|
|
||||||
if attention_mask is not None:
|
if self.training:
|
||||||
if q_len == 1: # inference with cache
|
warnings.warn("xops is not supported on Intel GPU, so just use normal implementation")
|
||||||
if len(attention_mask.size()) == 4:
|
|
||||||
attention_mask = attention_mask[:, :, -1:, :]
|
attn_weights = torch.matmul(
|
||||||
else:
|
query_states.to(dtype=key_states.dtype), key_states.transpose(2, 3)
|
||||||
attention_mask = attention_mask[:, -1:, :]
|
) / math.sqrt(self.head_dim)
|
||||||
if attention_mask.shape[-2] == attn_weights.shape[-2]:
|
|
||||||
attn_weights = attn_weights + attention_mask
|
if attention_mask is not None:
|
||||||
|
if q_len == 1: # inference with cache
|
||||||
|
if len(attention_mask.size()) == 4:
|
||||||
|
attention_mask = attention_mask[:, :, -1:, :]
|
||||||
else:
|
else:
|
||||||
# support for Baichuan/Baichuan2 13B Chat running speculative decoding
|
attention_mask = attention_mask[:, -1:, :]
|
||||||
# split attention mask on dim -2
|
if attention_mask.shape[-2] == attn_weights.shape[-2]:
|
||||||
split_sizes = [attention_mask.shape[-2] - attn_weights.shape[-2],
|
attn_weights = attn_weights + attention_mask
|
||||||
attn_weights.shape[-2]]
|
else:
|
||||||
# the last chunk of splited is the new attention mask
|
# support for Baichuan/Baichuan2 13B Chat running speculative decoding
|
||||||
attention_mask = attention_mask.split(split_sizes, dim=-2)[-1]
|
# split attention mask on dim -2
|
||||||
attn_weights = attn_weights + attention_mask
|
split_sizes = [attention_mask.shape[-2] - attn_weights.shape[-2],
|
||||||
attn_weights = torch.max(
|
attn_weights.shape[-2]]
|
||||||
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
# the last chunk of splited is the new attention mask
|
||||||
)
|
attention_mask = attention_mask.split(split_sizes, dim=-2)[-1]
|
||||||
|
attn_weights = attn_weights + attention_mask
|
||||||
|
attn_weights = torch.max(
|
||||||
|
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
||||||
|
)
|
||||||
|
|
||||||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
||||||
attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states)
|
attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states)
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2)
|
attn_output = attn_output.transpose(1, 2)
|
||||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
attn_output = self.o_proj(attn_output)
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
|
@ -647,21 +511,3 @@ def baichuan_13b_get_alibi_mask(self, tensor, seq_length_with_past):
|
||||||
: self.n_head, :seq_length_with_past, :seq_length_with_past
|
: self.n_head, :seq_length_with_past, :seq_length_with_past
|
||||||
]
|
]
|
||||||
return mask
|
return mask
|
||||||
|
|
||||||
|
|
||||||
def native_sdp_split_qkv_tensor(query, key, value, attention_mask):
|
|
||||||
block_size = 8
|
|
||||||
query_split = torch.split(query, block_size, dim=1)
|
|
||||||
key_split = torch.split(key.transpose(-2, -1), block_size, dim=1)
|
|
||||||
value_split = torch.split(value, block_size, dim=1)
|
|
||||||
attn_outputs = []
|
|
||||||
scaling_factor = 1 / math.sqrt(query.size(-1))
|
|
||||||
for q, k, v in zip(query_split, key_split, value_split):
|
|
||||||
attn_output_split = torch.matmul(q * scaling_factor, k)
|
|
||||||
if attention_mask is not None:
|
|
||||||
attn_output_split += attention_mask
|
|
||||||
attn_output_split = torch.softmax(attn_output_split, -1)
|
|
||||||
attn_output_split = torch.matmul(attn_output_split, v)
|
|
||||||
attn_outputs.append(attn_output_split)
|
|
||||||
attn_output = torch.cat(attn_outputs, dim=1)
|
|
||||||
return attn_output, None
|
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue