refactor baichuan2-7b (#11062)

This commit is contained in:
Yishuo Wang 2024-05-17 13:01:34 +08:00 committed by GitHub
parent 84239d0bd3
commit 981d668be6
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 139 additions and 287 deletions

View file

@ -710,6 +710,12 @@ def _optimize_pre(model):
model.apply(pre_compute_inv_freq) model.apply(pre_compute_inv_freq)
from ipex_llm.transformers.models.phi3 import split_mlp from ipex_llm.transformers.models.phi3 import split_mlp
model.apply(split_mlp) model.apply(split_mlp)
# for baichuan2
if model.config.model_type == "baichuan" and model.config.vocab_size == 125696:
if model.config.hidden_size in [4096, 2048]:
# baichuan2-7B
from ipex_llm.transformers.models.baichuan2 import pre_compute_inv_freq
model.apply(pre_compute_inv_freq)
if model.config.model_type == "qwen": if model.config.model_type == "qwen":
rope_base = model.config.rotary_emb_base rope_base = model.config.rotary_emb_base
from accelerate.big_modeling import init_empty_weights from accelerate.big_modeling import init_empty_weights

View file

@ -23,50 +23,30 @@ from typing import Optional, Tuple
import torch import torch
import torch.utils.checkpoint import torch.utils.checkpoint
from torch.nn import functional as F from torch.nn import functional as F
from ipex_llm.ggml.quantize import ggml_tensor_qtype
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \ from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
restore_fp8_kv_cache, use_quantize_kv_cache restore_fp8_kv_cache, use_quantize_kv_cache
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \ from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, \
append_kv_cache, is_enough_kv_cache_room_4_31 append_kv_cache, is_enough_kv_cache_room_4_31
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
from ipex_llm.transformers.models.utils import mlp_fusion_check from ipex_llm.transformers.models.utils import mlp_fusion_check
from ipex_llm.utils.common.log4Error import invalidInputError import warnings
from transformers.utils import logging
logger = logging.get_logger(__name__)
try:
from xformers import ops as xops
except ImportError:
xops = None
logger.warning(
"Xformers is not installed correctly. If you want to use memory_efficient_attention to "
"accelerate training use the following command to install Xformers\npip install xformers."
)
import os import os
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256)) KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
def should_split_qkv_tensor(query_states, bsz, num_heads, q_len, kv_seq_len, output_attentions): def pre_compute_inv_freq(module: torch.nn.Module):
if not output_attentions: if module.__class__.__name__ == "RotaryEmbedding":
if os.environ.get("IPEX_LLM_SPLIT_QKV", None) is not None: inv_freq = module.inv_freq
return os.environ.get("IPEX_LLM_SPLIT_QKV", None) == "1" del module.inv_freq
elif query_states.dtype == torch.float16 and \ module.register_buffer("inv_freq", inv_freq, persistent=False)
query_states.shape[2] >= 5400:
# split tensor for memory block limitation
# support fp16 and set input length threshold at 5400 for now
return True
elif query_states.element_size()*bsz*num_heads*q_len*kv_seq_len >= 4*1024**3:
# attn_weight size larger than memory block limitation 4GB
return True
return False
def baichuan_13b_rms_norm_forward(self, hidden_states): def baichuan_13b_rms_norm_forward(self, hidden_states):
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad): if hidden_states.device.type == "xpu" and not (self.training or hidden_states.requires_grad):
import linear_q4_0 import linear_q4_0
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous() x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
output = linear_q4_0.rms_norm(self.weight, x_2d, self.epsilon) output = linear_q4_0.rms_norm(self.weight, x_2d, self.epsilon)
@ -105,57 +85,37 @@ def baichuan_attention_forward_7b(
past_key_value: Optional[Tuple[torch.Tensor]] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False, output_attentions: bool = False,
use_cache: bool = False, use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: ):
if use_quantize_kv_cache(self.W_pack, hidden_states):
forward_function = baichuan_attention_forward_7b_quantized
else:
forward_function = baichuan_attention_forward_7b_origin
return forward_function(
self=self,
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache
)
def baichuan_attention_forward_7b_quantized(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size() bsz, q_len, _ = hidden_states.size()
device = hidden_states.device device = hidden_states.device
proj = self.W_pack(hidden_states) qkv = self.W_pack(hidden_states)
proj = torch.chunk(proj, 3, -1) qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim)
# batch_size x source_len x hidden_size qkv = qkv.transpose(1, 2)
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) query_states, key_states, value_states = qkv.split([self.num_heads,
# batch_size x target_len x head_size self.num_heads,
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) self.num_heads], dim=1)
# batch_size x source_len x hidden_size
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2] kv_seq_len = key_states.shape[2]
if past_key_value is not None: if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2] kv_seq_len += past_key_value[0].shape[2]
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, # IPEX-LLM OPT: fuse rope
key_states, if should_use_fuse_rope(hidden_states, position_ids, self.training):
position_ids, import linear_q4_0
"baichuan") linear_q4_0.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
query_states, key_states)
else: else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "baichuan") cos, sin, position_ids, "baichuan")
query_states = query_states.to(hidden_states.dtype)
key_states = key_states.to(hidden_states.dtype)
# IPEX-LLM OPT: kv cache and quantize kv
use_quantize_kv = use_quantize_kv_cache(self.W_pack, hidden_states)
if use_quantize_kv:
if past_key_value is None: if past_key_value is None:
kv_seq_len = key_states.shape[-2]
k_cache, v_cache = init_fp8_kv_cache( k_cache, v_cache = init_fp8_kv_cache(
bsz, self.num_heads, kv_seq_len, self.head_dim, bsz, self.num_heads, kv_seq_len, self.head_dim,
device=device device=device
@ -164,170 +124,84 @@ def baichuan_attention_forward_7b_quantized(
k_cache, v_cache = past_key_value k_cache, v_cache = past_key_value
key_states, value_states = append_fp8_kv_cache(k_cache, v_cache, key_states, value_states = append_fp8_kv_cache(k_cache, v_cache,
key_states, value_states) key_states, value_states)
past_key_value = (key_states, value_states) if use_cache else None
invalidInputError(attention_mask is None or attention_mask.dtype != torch.bool,
"attention_mask's dtype cannot be bool")
scaling_factor = 1 / math.sqrt(query_states.size(-1))
if query_states.size(2) != 1 or device.type != 'xpu':
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
if should_split_qkv_tensor(query_states, bsz, self.num_heads,
q_len, kv_seq_len, output_attentions):
attn_output, attn_weights = native_sdp_split_qkv_tensor(query_states, key_states,
value_states, attention_mask)
else: else:
attn_output = torch.matmul(query_states * scaling_factor, key_states.transpose(-2, -1)) if past_key_value is None:
if attention_mask is not None:
attn_output += attention_mask
attn_output = torch.softmax(attn_output, -1)
attn_output = attn_output.to(hidden_states.dtype)
attn_output = torch.matmul(attn_output, value_states)
else:
import linear_q4_0
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
attention_mask)
attn_weights = None
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def baichuan_attention_forward_7b_origin(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
proj = self.W_pack(hidden_states)
proj = torch.chunk(proj, 3, -1)
# batch_size x source_len x hidden_size
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# batch_size x target_len x head_size
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# batch_size x source_len x hidden_size
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
enough_kv_room = True
if past_key_value is not None:
enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=kv_seq_len)
kv_seq_len += past_key_value[0].shape[-2]
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
key_states,
position_ids,
"baichuan")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "baichuan")
# [bsz, nh, t, hd]
# if past_key_value is not None:
# # reuse k, v, self_attention
# key_states = torch.cat([past_key_value[0], key_states], dim=2)
# value_states = torch.cat([past_key_value[1], value_states], dim=2)
if past_key_value is not None:
# reuse k, v, self_attention
cache_k = past_key_value[0]
cache_v = past_key_value[1]
if not enough_kv_room:
# allocate new
new_cache_k, new_cache_v = extend_kv_cache(bsz,
self.num_heads,
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
cache_k = new_cache_k
cache_v = new_cache_v
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
elif use_cache:
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
new_key_states, new_value_states = init_kv_cache(bsz, k_cache, v_cache = init_kv_cache(bsz,
self.num_heads, self.num_heads,
self.head_dim, self.head_dim,
kv_seq_len, kv_seq_len,
max_cache_length, max_cache_length,
dtype=key_states.dtype, dtype=key_states.dtype,
device=device) device=device)
new_key_states[:] = key_states k_cache[...] = key_states
new_value_states[:] = value_states v_cache[...] = value_states
key_states = new_key_states key_states = k_cache
value_states = new_value_states value_states = v_cache
else:
k_cache, v_cache = past_key_value
if k_cache.stride(1) < kv_seq_len * k_cache.size(3):
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
new_k_cache, new_v_cache = extend_kv_cache(bsz,
self.num_heads,
self.head_dim,
k_cache.size(2),
max_cache_length,
dtype=k_cache.dtype,
device=device)
new_k_cache[...] = k_cache
new_v_cache[...] = v_cache
k_cache = new_k_cache
v_cache = new_v_cache
key_states, value_states = append_kv_cache(k_cache, v_cache, key_states, value_states)
past_key_value = (key_states, value_states) if use_cache else None past_key_value = (key_states, value_states) if use_cache else None
invalidInputError(attention_mask is None or attention_mask.dtype != torch.bool, if self.training:
"attention_mask's dtype cannot be bool") warnings.warn("xops is not supported on Intel GPU, so just use normal implementation")
if xops is not None and self.training:
attn_weights = None attn_weights = None
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = xops.memory_efficient_attention(
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
)
else:
if not self.training and not hidden_states.requires_grad and \ if not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask): use_flash_attention(query_states, key_states, attention_mask):
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16), attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
key_states.to(dtype=torch.float16), key_states.to(dtype=torch.float16),
value_states.to(dtype=torch.float16), value_states.to(dtype=torch.float16),
is_causal=True) is_causal=True).to(hidden_states.dtype)
attn_weights = None elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
elif not self.training and not hidden_states.requires_grad and \
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
import linear_q4_0 import linear_q4_0
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask) if use_quantize_kv:
attn_output = attn_output.view(query_states.shape) attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
attn_weights = None
else:
if should_split_qkv_tensor(query_states, bsz, self.num_heads,
q_len, kv_seq_len, output_attentions):
attn_output, attn_weights = native_sdp_split_qkv_tensor(query_states,
key_states,
value_states,
attention_mask) attention_mask)
else: else:
scaling_factor = 1 / math.sqrt(query_states.size(-1)) attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
attn_output = torch.matmul(query_states * scaling_factor, elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
key_states.transpose(-2, -1)) import linear_q4_0
if use_quantize_kv:
attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
else:
attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: if attention_mask is not None:
attn_output += attention_mask attn_weights = attn_weights + attention_mask
attn_output = torch.softmax(attn_output, -1) # upcast attention to fp32
attn_output = torch.matmul(attn_output, value_states) attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = self.o_proj(attn_output) attn_output = self.o_proj(attn_output)
if not output_attentions: if not output_attentions:
attn_weights = None attn_weights = None
return attn_output.to(hidden_states.dtype), attn_weights, past_key_value return attn_output, attn_weights, past_key_value
def baichuan_attention_forward_13b( def baichuan_attention_forward_13b(
@ -507,20 +381,10 @@ def baichuan_attention_forward_13b_origin(
value_states = new_value_states value_states = new_value_states
past_key_value = (key_states, value_states) if use_cache else None past_key_value = (key_states, value_states) if use_cache else None
if xops is not None and self.training:
attn_weights = None if self.training:
# query_states = query_states.transpose(1, 2) warnings.warn("xops is not supported on Intel GPU, so just use normal implementation")
# key_states = key_states.transpose(1, 2)
# value_states = value_states.transpose(1, 2)
# attn_output = xops.memory_efficient_attention(
# query_states, key_states, value_states, attn_bias=attention_mask
# )
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True,
enable_mem_efficient=True):
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states,
attn_mask=attention_mask)
attn_output = attn_output.transpose(1, 2)
else:
attn_weights = torch.matmul( attn_weights = torch.matmul(
query_states.to(dtype=key_states.dtype), key_states.transpose(2, 3) query_states.to(dtype=key_states.dtype), key_states.transpose(2, 3)
) / math.sqrt(self.head_dim) ) / math.sqrt(self.head_dim)
@ -647,21 +511,3 @@ def baichuan_13b_get_alibi_mask(self, tensor, seq_length_with_past):
: self.n_head, :seq_length_with_past, :seq_length_with_past : self.n_head, :seq_length_with_past, :seq_length_with_past
] ]
return mask return mask
def native_sdp_split_qkv_tensor(query, key, value, attention_mask):
block_size = 8
query_split = torch.split(query, block_size, dim=1)
key_split = torch.split(key.transpose(-2, -1), block_size, dim=1)
value_split = torch.split(value, block_size, dim=1)
attn_outputs = []
scaling_factor = 1 / math.sqrt(query.size(-1))
for q, k, v in zip(query_split, key_split, value_split):
attn_output_split = torch.matmul(q * scaling_factor, k)
if attention_mask is not None:
attn_output_split += attention_mask
attn_output_split = torch.softmax(attn_output_split, -1)
attn_output_split = torch.matmul(attn_output_split, v)
attn_outputs.append(attn_output_split)
attn_output = torch.cat(attn_outputs, dim=1)
return attn_output, None