diff --git a/python/llm/src/bigdl/llm/transformers/convert.py b/python/llm/src/bigdl/llm/transformers/convert.py index e3072179..1801cc64 100644 --- a/python/llm/src/bigdl/llm/transformers/convert.py +++ b/python/llm/src/bigdl/llm/transformers/convert.py @@ -934,6 +934,19 @@ def _optimize_post(model, lightweight_bmm=False): convert_forward(model, module.RwkvSelfAttention, rwkv_attention_forward) + elif model.config.model_type == "deci": + modeling_module_name = model.__class__.__module__ + module = importlib.import_module(modeling_module_name) + from bigdl.llm.transformers.models.decilm import decilm_attention_forward_4_35_2 + convert_forward(model, + module.LlamaRMSNorm, + llama_rms_norm_forward) + convert_forward(model, + module.LlamaMLP, + llama_mlp_forward) + convert_forward(model, + module.DeciLMAttention, + decilm_attention_forward_4_35_2, ) elif model.config.model_type == "rwkv5": # rwkv v5 modeling_module_name = model.__class__.__module__ diff --git a/python/llm/src/bigdl/llm/transformers/models/decilm.py b/python/llm/src/bigdl/llm/transformers/models/decilm.py new file mode 100644 index 00000000..788f4bab --- /dev/null +++ b/python/llm/src/bigdl/llm/transformers/models/decilm.py @@ -0,0 +1,180 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Some parts of this file is adapted from +# https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/models/llama/modeling_llama.py +# which is licensed under Apache License 2.0: +# +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch +from typing import Optional, Tuple +import torch.nn.functional as F +from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache +from bigdl.llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \ + apply_rotary_pos_emb +from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu +from bigdl.llm.transformers.models.llama import should_use_fuse_rope, repeat_kv +from bigdl.llm.utils.common import invalidInputError + +KV_CACHE_ALLOC_BLOCK_LENGTH = 256 + + +def decilm_attention_forward_4_35_2( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, + padding_mask: Optional[torch.LongTensor] = None, + **kwargs, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + is_decode = past_key_value is not None + device = hidden_states.device + + use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids) + enough_kv_room = is_enough_kv_cache_room_4_31(past_key_value, seq_len=q_len) + + if self.config.pretraining_tp > 1: + key_value_slicing = ((self.num_key_value_heads * self.head_dim) // + self.config.pretraining_tp) + query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) + // self.config.pretraining_tp, dim=0) + key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) + value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) + + query_states = [F.linear(hidden_states, query_slices[i]) + for i in range(self.config.pretraining_tp)] + query_states = torch.cat(query_states, dim=-1) + + key_states = [F.linear(hidden_states, key_slices[i]) + for i in range(self.config.pretraining_tp)] + key_states = torch.cat(key_states, dim=-1) + + value_states = [F.linear(hidden_states, value_slices[i]) + for i in range(self.config.pretraining_tp)] + value_states = torch.cat(value_states, dim=-1) + else: + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, + self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, + self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, + self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + + if use_fuse_rope: + query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, + key_states, + position_ids, + "llama") + else: + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, + cos, sin, position_ids, "llama") + + if past_key_value is not None: + # reuse k, v, self_attention + cache_k = past_key_value[0] + cache_v = past_key_value[1] + if not enough_kv_room: + # allocate new + new_cache_k, new_cache_v = extend_kv_cache(bsz, + self.num_key_value_heads, # Support GQA + self.head_dim, + cache_k.size(2), + kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, + dtype=cache_k.dtype, + device=device) + new_cache_k[:] = cache_k + new_cache_v[:] = cache_v + cache_k = new_cache_k + cache_v = new_cache_v + + key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states) + + elif use_cache: + max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH + new_key_states, new_value_states = init_kv_cache(bsz, + self.num_key_value_heads, + self.head_dim, + kv_seq_len, + max_cache_length, + dtype=key_states.dtype, + device=device) + new_key_states[:] = key_states + new_value_states[:] = value_states + key_states = new_key_states + value_states = new_value_states + + past_key_value = (key_states, value_states) if use_cache else None + + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + if is_decode: + attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, + is_causal=False, + attn_mask=attention_mask) + attn_output = attn_output.contiguous().view(bsz, q_len, self.hidden_size) + + else: + attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, + is_causal=attention_mask is None, + attn_mask=attention_mask) + + invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim), + f"`attn_output` should be of size " + f"{(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}") + + attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size) + + if self.config.pretraining_tp > 1: + attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2) + o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, + dim=1) + attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) + for i in range(self.config.pretraining_tp)]) + else: + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value