Codegeex support (#12303)
* new codegeex attn * use kv cache * add compress/quantize kv * remove compress/quantize kv * fix style check * fix style * fix codegeex
This commit is contained in:
parent
72605c7016
commit
97a0f7fd35
2 changed files with 233 additions and 1 deletions
|
|
@ -1364,7 +1364,7 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
and model.config.architectures[0] in ["ChatGLMModel", "ChatGLMForConditionalGeneration"]
|
and model.config.architectures[0] in ["ChatGLMModel", "ChatGLMForConditionalGeneration"]
|
||||||
):
|
):
|
||||||
if hasattr(model.config, 'padded_vocab_size') and \
|
if hasattr(model.config, 'padded_vocab_size') and \
|
||||||
model.config.padded_vocab_size in [65024, 64896]:
|
model.config.padded_vocab_size == 65024:
|
||||||
# chatglm2-6b, chatglm2-6b-32k, chatglm3-6b, chatglm3-6b-32k, chatglm3-6b-128k
|
# chatglm2-6b, chatglm2-6b-32k, chatglm3-6b, chatglm3-6b-32k, chatglm3-6b-128k
|
||||||
modeling_module_name = model.__class__.__module__
|
modeling_module_name = model.__class__.__module__
|
||||||
module = importlib.import_module(modeling_module_name)
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
|
@ -1384,6 +1384,27 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
convert_forward(model,
|
convert_forward(model,
|
||||||
module.RMSNorm,
|
module.RMSNorm,
|
||||||
chatglm_rms_norm_forward)
|
chatglm_rms_norm_forward)
|
||||||
|
elif hasattr(model.config, 'padded_vocab_size') and \
|
||||||
|
model.config.padded_vocab_size == 64896:
|
||||||
|
# codegeex-nano
|
||||||
|
modeling_module_name = model.__class__.__module__
|
||||||
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
from ipex_llm.transformers.models.chatglm2 import codegeex_attention_forward
|
||||||
|
from ipex_llm.transformers.models.chatglm2 import chatglm_rms_norm_forward
|
||||||
|
from ipex_llm.transformers.models.chatglm2 import chatglm2_encoder_forward
|
||||||
|
from ipex_llm.transformers.models.chatglm2 import codegeex_model_forward
|
||||||
|
convert_forward(model,
|
||||||
|
module.SelfAttention,
|
||||||
|
codegeex_attention_forward)
|
||||||
|
convert_forward(model,
|
||||||
|
module.GLMTransformer,
|
||||||
|
chatglm2_encoder_forward)
|
||||||
|
convert_forward(model,
|
||||||
|
module.ChatGLMModel,
|
||||||
|
codegeex_model_forward)
|
||||||
|
convert_forward(model,
|
||||||
|
module.RMSNorm,
|
||||||
|
chatglm_rms_norm_forward)
|
||||||
elif hasattr(model.config, 'vocab_size') and model.config.vocab_size == 130528:
|
elif hasattr(model.config, 'vocab_size') and model.config.vocab_size == 130528:
|
||||||
# chatglm-6b
|
# chatglm-6b
|
||||||
modeling_module_name = model.__class__.__module__
|
modeling_module_name = model.__class__.__module__
|
||||||
|
|
|
||||||
|
|
@ -359,3 +359,214 @@ def chatglm2_attention_forward(
|
||||||
output = self.dense(attn_output)
|
output = self.dense(attn_output)
|
||||||
|
|
||||||
return output, past_key_value
|
return output, past_key_value
|
||||||
|
|
||||||
|
|
||||||
|
@torch.jit.script
|
||||||
|
def apply_rotary_pos_emb_original(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
||||||
|
# x: [sq, b, np, hn]
|
||||||
|
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
||||||
|
rot_dim = rope_cache.shape[-2] * 2
|
||||||
|
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
||||||
|
# truncate to support variable sizes
|
||||||
|
rope_cache = rope_cache[:sq]
|
||||||
|
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
|
||||||
|
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
|
||||||
|
x_out2 = torch.stack(
|
||||||
|
[
|
||||||
|
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
|
||||||
|
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
|
||||||
|
],
|
||||||
|
-1,
|
||||||
|
)
|
||||||
|
x_out2 = x_out2.flatten(3)
|
||||||
|
return torch.cat((x_out2, x_pass), dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
def codegeex_model_forward(
|
||||||
|
self,
|
||||||
|
input_ids,
|
||||||
|
position_ids: Optional[torch.Tensor]=None,
|
||||||
|
attention_mask: Optional[torch.BoolTensor]=None,
|
||||||
|
full_attention_mask: Optional[torch.BoolTensor]=None,
|
||||||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None,
|
||||||
|
inputs_embeds: Optional[torch.Tensor]=None,
|
||||||
|
use_cache: Optional[bool]=None,
|
||||||
|
output_hidden_states: Optional[bool]=None,
|
||||||
|
return_dict: Optional[bool]=None,
|
||||||
|
):
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None
|
||||||
|
else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
if inputs_embeds is None:
|
||||||
|
batch_size, seq_length = input_ids.shape
|
||||||
|
inputs_embeds = self.embedding(input_ids)
|
||||||
|
else:
|
||||||
|
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
|
||||||
|
seq_length, batch_size, _ = inputs_embeds.shape
|
||||||
|
input_ids = torch.empty((batch_size, seq_length),
|
||||||
|
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
||||||
|
|
||||||
|
if full_attention_mask is None:
|
||||||
|
if (attention_mask is not None and not attention_mask.all()) or (
|
||||||
|
past_key_values and seq_length != 1):
|
||||||
|
full_attention_mask = self.get_masks(input_ids,
|
||||||
|
past_key_values,
|
||||||
|
padding_mask=attention_mask)
|
||||||
|
|
||||||
|
# ipex-llm changes begin
|
||||||
|
# 1. replace `rotary_pos_emb` with `inv_freq` and `position_ids`
|
||||||
|
# 2. generate `causal_mask` and replace `full_attention_mask` with it
|
||||||
|
if position_ids is None:
|
||||||
|
if past_key_values is None:
|
||||||
|
position_ids = torch.arange(seq_length, dtype=torch.int64, device=inputs_embeds.device)
|
||||||
|
else:
|
||||||
|
if isinstance(past_key_values, DynamicCompressCache):
|
||||||
|
kv_length = past_key_values.get_seq_length()
|
||||||
|
else:
|
||||||
|
kv_length = past_key_values[0][0].size(0)
|
||||||
|
position_ids = torch.arange(kv_length, kv_length + seq_length,
|
||||||
|
dtype=torch.int64, device=inputs_embeds.device)
|
||||||
|
position_ids = position_ids.repeat(batch_size, 1)
|
||||||
|
use_fuse_rope = input_ids.device.type == "xpu" and not self.training
|
||||||
|
|
||||||
|
# Rotary positional embeddings
|
||||||
|
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
||||||
|
if position_ids is not None:
|
||||||
|
rotary_pos_emb = rotary_pos_emb[position_ids]
|
||||||
|
else:
|
||||||
|
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
|
||||||
|
if use_fuse_rope:
|
||||||
|
# Repeat cos sin here, call only once for each token.
|
||||||
|
# Chatglm2's rotary embedding is similar to gptj's, is rotate_every_two.
|
||||||
|
# If put this to attension forward, it will generate too many times.
|
||||||
|
cos, sin = rotary_pos_emb.split(rotary_pos_emb.shape[-1] // 2, dim=-1)
|
||||||
|
cos = cos.squeeze(-1)
|
||||||
|
sin = sin.squeeze(-1)
|
||||||
|
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
||||||
|
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
||||||
|
rotary_pos_emb = (cos, sin)
|
||||||
|
else:
|
||||||
|
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
|
||||||
|
|
||||||
|
# `full_attention_mask` is not None only when
|
||||||
|
# `past_key_values` is not None and `seq_length` > 1
|
||||||
|
if full_attention_mask is not None:
|
||||||
|
causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)],
|
||||||
|
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
||||||
|
mask_value = torch.finfo(inputs_embeds.dtype).min
|
||||||
|
causal_mask.masked_fill_(full_attention_mask, mask_value)
|
||||||
|
elif self.training or (inputs_embeds.device.type != "xpu" and past_key_values is None):
|
||||||
|
full_attention_mask = self.get_masks(input_ids,
|
||||||
|
past_key_values,
|
||||||
|
padding_mask=attention_mask)
|
||||||
|
causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)],
|
||||||
|
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
||||||
|
mask_value = torch.finfo(inputs_embeds.dtype).min
|
||||||
|
causal_mask.masked_fill_(full_attention_mask, mask_value)
|
||||||
|
else:
|
||||||
|
causal_mask = None
|
||||||
|
|
||||||
|
# Run encoder.
|
||||||
|
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
||||||
|
inputs_embeds, causal_mask,
|
||||||
|
rotary_pos_emb=rotary_pos_emb,
|
||||||
|
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
|
||||||
|
)
|
||||||
|
# ipex-llm changes end
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
|
||||||
|
if v is not None)
|
||||||
|
|
||||||
|
return BaseModelOutputWithPast(
|
||||||
|
last_hidden_state=hidden_states,
|
||||||
|
past_key_values=presents,
|
||||||
|
hidden_states=all_hidden_states,
|
||||||
|
attentions=all_self_attentions,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def codegeex_attention_forward(
|
||||||
|
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
|
||||||
|
):
|
||||||
|
q_len, bsz, _ = hidden_states.size()
|
||||||
|
n_head = self.num_attention_heads_per_partition
|
||||||
|
n_kv_head = self.num_multi_query_groups_per_partition if self.multi_query_attention else n_head
|
||||||
|
head_dim = self.hidden_size_per_attention_head
|
||||||
|
|
||||||
|
past_key_value = None if kv_cache is None else (kv_cache[0].permute(1, 2, 0, 3),
|
||||||
|
kv_cache[1].permute(1, 2, 0, 3))
|
||||||
|
qkv = self.query_key_value(hidden_states)
|
||||||
|
qkv = qkv.view(q_len, bsz, n_head + 2 * n_kv_head, head_dim)
|
||||||
|
# [seq_len, bsz, n_head, head_dim] -> [bsz, n_head, seq_len, head_dim]
|
||||||
|
qkv = qkv.permute(1, 2, 0, 3)
|
||||||
|
query_layer, key_layer, value_layer = qkv.split([n_head,
|
||||||
|
n_kv_head,
|
||||||
|
n_kv_head], dim=1)
|
||||||
|
kv_seq_len = key_layer.shape[2]
|
||||||
|
if past_key_value is not None:
|
||||||
|
kv_seq_len += past_key_value[0].shape[2]
|
||||||
|
|
||||||
|
# apply relative positional encoding (rotary embedding)
|
||||||
|
if len(rotary_pos_emb) == 2 and isinstance(rotary_pos_emb, tuple):
|
||||||
|
cos, sin = rotary_pos_emb
|
||||||
|
rot_dim = cos.shape[-1]
|
||||||
|
query_layer = query_layer.transpose(1, 2)
|
||||||
|
key_layer = key_layer.transpose(1, 2)
|
||||||
|
query_layer_cur = query_layer[..., :rot_dim]
|
||||||
|
key_layer_cur = key_layer[..., :rot_dim]
|
||||||
|
# ipex_llm's apply_rotary_embedding can change the origin storage,
|
||||||
|
# so query_layer will get the result directly.
|
||||||
|
torch.ops.torch_ipex.apply_rotary_embedding(query_layer_cur, sin, cos, query_layer_cur)
|
||||||
|
torch.ops.torch_ipex.apply_rotary_embedding(key_layer_cur, sin, cos, key_layer_cur)
|
||||||
|
query_layer = query_layer.transpose(1, 2)
|
||||||
|
key_layer = key_layer.transpose(1, 2)
|
||||||
|
else:
|
||||||
|
query_layer = apply_rotary_pos_emb_original(query_layer, rotary_pos_emb)
|
||||||
|
key_layer = apply_rotary_pos_emb_original(key_layer, rotary_pos_emb)
|
||||||
|
|
||||||
|
key_layer, value_layer = update_past_key_value(
|
||||||
|
past_key_value, key_layer, value_layer,
|
||||||
|
kv_seq_len, False, hidden_states.device
|
||||||
|
)
|
||||||
|
# past_key_value: [bsz, n_kv_head, seq_len, head_dim] -> [seq_len, bsz, n_kv_head, head_dim]
|
||||||
|
past_key_value = (key_layer.permute(2, 0, 1, 3),
|
||||||
|
value_layer.permute(2, 0, 1, 3)) if use_cache else None
|
||||||
|
|
||||||
|
# =================
|
||||||
|
# Output. [sq, b, h]
|
||||||
|
# =================
|
||||||
|
context_layer = None
|
||||||
|
if use_sdp(q_len, kv_seq_len, head_dim, query_layer):
|
||||||
|
import xe_addons
|
||||||
|
context_layer = xe_addons.sdp(query_layer, key_layer, value_layer, attention_mask)
|
||||||
|
elif use_sdp_causal(q_len, kv_seq_len, head_dim, query_layer, self.training):
|
||||||
|
import xe_addons
|
||||||
|
context_layer = xe_addons.sdp_causal(query_layer, key_layer, value_layer, attention_mask)
|
||||||
|
else:
|
||||||
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
|
key_layer = repeat_kv(key_layer, n_head // n_kv_head)
|
||||||
|
value_layer = repeat_kv(value_layer, n_head // n_kv_head)
|
||||||
|
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
||||||
|
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
|
||||||
|
key_layer,
|
||||||
|
value_layer,
|
||||||
|
is_causal=True)
|
||||||
|
else:
|
||||||
|
if attention_mask is not None:
|
||||||
|
attention_mask = ~attention_mask
|
||||||
|
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
|
||||||
|
key_layer,
|
||||||
|
value_layer,
|
||||||
|
attention_mask)
|
||||||
|
|
||||||
|
context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(q_len,
|
||||||
|
bsz,
|
||||||
|
n_head * head_dim)
|
||||||
|
output = self.dense(context_layer)
|
||||||
|
|
||||||
|
return output, past_key_value
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue