Update readme (#8881)
This commit is contained in:
parent
7b3ac66e17
commit
9760eec6de
2 changed files with 99 additions and 12 deletions
62
README.md
62
README.md
|
|
@ -2,26 +2,74 @@
|
|||
|
||||
<p align="center"> <img src="docs/readthedocs/image/bigdl_logo.jpg" height="140px"><br></p>
|
||||
|
||||
_**Fast, Distributed, Secure AI for Big Data**_
|
||||
|
||||
</div>
|
||||
|
||||
---
|
||||
## Latest News
|
||||
## BigDL-LLM
|
||||
|
||||
- **Try the latest [`bigdl-llm`](python/llm) library for running LLM (large language model) on your Intel laptop or GPU using INT4 with very low latency!**[^1] *(It is built on top of the excellent work of [llama.cpp](https://github.com/ggerganov/llama.cpp), [gptq](https://github.com/IST-DASLab/gptq), [bitsandbytes](https://github.com/TimDettmers/bitsandbytes), [qlora](https://github.com/artidoro/qlora), etc., and supports any Hugging Face Transformers model)*
|
||||
**[`bigdl-llm`](python/llm)** is a library for running ***LLM*** (large language model) on your Intel ***laptop*** or ***GPU*** using INT4 with very low latency[^1] (for any **PyTorch** model).
|
||||
> *It is built on top of the excellent work of [llama.cpp](https://github.com/ggerganov/llama.cpp), [gptq](https://github.com/IST-DASLab/gptq), [ggml](https://github.com/ggerganov/ggml), [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), [bitsandbytes](https://github.com/TimDettmers/bitsandbytes), [qlora](https://github.com/artidoro/qlora), [gptq_for_llama](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [chatglm.cpp](https://github.com/li-plus/chatglm.cpp), [redpajama.cpp](https://github.com/togethercomputer/redpajama.cpp), [gptneox.cpp](https://github.com/byroneverson/gptneox.cpp), [bloomz.cpp](https://github.com/NouamaneTazi/bloomz.cpp/), etc.*
|
||||
|
||||
### Latest update
|
||||
- `bigdl-llm` now supports Intel Arc or Flex GPU; see the the latest GPU examples [here](python/llm/example/gpu).
|
||||
- `bigdl-llm` tutorial is made availabe [here](https://github.com/intel-analytics/bigdl-llm-tutorial).
|
||||
- Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLaMA2, ChatGLM/ChatGLM2, MPT, Falcon, Dolly-v1/Dolly-v2, StarCoder, Whisper, QWen, Baichuan, MOSS,* and more; see the complete list [here](python/llm/README.md#verified-models).
|
||||
|
||||
### `bigdl-llm` Demos
|
||||
See the ***optimized performance*** of `chatglm2-6b`, `llama-2-13b-chat`, and `starcoder-15b` models on a 12th Gen Intel Core CPU below.
|
||||
|
||||
<p align="center">
|
||||
<img src="https://github.com/bigdl-project/bigdl-project.github.io/blob/master/assets/chatglm2-6b.gif" width='30%' /> <img src="https://github.com/bigdl-project/bigdl-project.github.io/blob/master/assets/llama-2-13b-chat.gif" width='30%' /> <img src="https://github.com/bigdl-project/bigdl-project.github.io/blob/master/assets/llm-15b5.gif" width='30%' />
|
||||
<img src="https://github.com/bigdl-project/bigdl-project.github.io/blob/master/assets/llm-models3.png" width='76%'/>
|
||||
</p>
|
||||
|
||||
- **[Update] `bigdl-llm` now supports Intel Arc or Flex GPU; see the the latest GPU examples [here](python/llm/example/gpu).**
|
||||
### `bigdl-llm` quick start
|
||||
|
||||
- **Over a dozen models have been verified on [`bigdl-llm`](python/llm)**, including *LLaMA/LLaMA2, ChatGLM/ChatGLM2, MPT, Falcon, Dolly-v1/Dolly-v2, StarCoder, Whisper, QWen, Baichuan,* and more; see the complete list [here](python/llm/README.md#verified-models).
|
||||
#### Install
|
||||
You may install **`bigdl-llm`** as follows:
|
||||
```bash
|
||||
pip install --pre --upgrade bigdl-llm[all]
|
||||
```
|
||||
> Note: `bigdl-llm` has been tested on Python 3.9
|
||||
|
||||
#### Run Model
|
||||
|
||||
You may apply INT4 optimizations to any Hugging Face *Transformers* models as follows.
|
||||
|
||||
```python
|
||||
#load Hugging Face Transformers model with INT4 optimizations
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
|
||||
|
||||
#run the optimized model
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
input_ids = tokenizer.encode(input_str, ...)
|
||||
output_ids = model.generate(input_ids, ...)
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
```
|
||||
*See the complete examples [here](python/llm/example/transformers/transformers_int4/).*
|
||||
|
||||
>**Note**: You may apply more low bit optimizations (including INT8, INT5 and INT4) as follows:
|
||||
>```python
|
||||
>model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_low_bit="sym_int5")
|
||||
>```
|
||||
>*See the complete example [here](python/llm/example/transformers/transformers_low_bit/).*
|
||||
|
||||
|
||||
After the model is optimizaed using INT4 (or INT8/INT5), you may also save and load the optimized model as follows:
|
||||
|
||||
```python
|
||||
model.save_low_bit(model_path)
|
||||
|
||||
new_model = AutoModelForCausalLM.load_low_bit(model_path)
|
||||
```
|
||||
*See the complete example [here](python/llm/example/transformers/transformers_low_bit/).*
|
||||
|
||||
***For more details, please refer to the `bigdl-llm` [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
|
||||
|
||||
---
|
||||
## Overview
|
||||
## Overview of the complete BigDL project
|
||||
|
||||
BigDL seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:
|
||||
|
||||
|
|
|
|||
|
|
@ -1,17 +1,56 @@
|
|||
.. meta::
|
||||
:google-site-verification: S66K6GAclKw1RroxU0Rka_2d1LZFVe27M0gRneEsIVI
|
||||
|
||||
BigDL: fast, distributed, secure AI for Big Data
|
||||
BigDL: fast and secure AI
|
||||
=================================================
|
||||
|
||||
Latest News
|
||||
BigDL-LLM
|
||||
---------------------------------
|
||||
- **Try the latest** `bigdl-llm <https://github.com/intel-analytics/BigDL/tree/main/python/llm>`_ **library for running LLM (large language model) on your Intel laptop using INT4 with very low latency!** [*]_. *(It is built on top of the excellent work of* `llama.cpp <https://github.com/ggerganov/llama.cpp>`_, `gptq <https://github.com/IST-DASLab/gptq>`_, `bitsandbytes <https://github.com/TimDettmers/bitsandbytes>`_, *etc., and supports any Hugging Face Transformers model.)*
|
||||
`bigdl-llm <https://github.com/intel-analytics/BigDL/tree/main/python/llm>`_ is a library for running **LLM** (large language model) on your Intel **laptop** or **GPU** using INT4 with very low latency [*]_ (for any **PyTorch** model).
|
||||
|
||||
.. note::
|
||||
|
||||
It is built on top of the excellent work of `llama.cpp <https://github.com/ggerganov/llama.cpp>`_, `gptq <https://github.com/IST-DASLab/gptq>`_, `bitsandbytes <https://github.com/TimDettmers/bitsandbytes>`_, `qlora <https://github.com/artidoro/qlora>`_, etc.
|
||||
|
||||
Latest update
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
- ``bigdl-llm`` now supports Intel Arc and Flex GPU; see the the latest GPU examples `here <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/gpu>`_.
|
||||
- ``bigdl-llm`` tutorial tutorial is made availabe `here <https://github.com/intel-analytics/bigdl-llm-tutorial>`_.
|
||||
- Over a dozen models have been verified on ``bigdl-llm``, including *LLaMA/LLaMA2, ChatGLM/ChatGLM2, MPT, Falcon, Dolly-v1/Dolly-v2, StarCoder, Whisper, QWen, Baichuan,* and more; see the complete list `here <https://github.com/intel-analytics/BigDL/tree/main/python/llm/README.md#verified-models>`_.
|
||||
|
||||
bigdl-llm quickstart
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
You may install ``bigdl-llm`` as follows:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
pip install --pre --upgrade bigdl-llm[all]
|
||||
|
||||
.. note::
|
||||
|
||||
``bigdl-llm`` has been tested on Python 3.9.
|
||||
|
||||
You can then apply INT4 optimizations to any Hugging Face *Transformers* models as follows.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
#load Hugging Face Transformers model with INT4 optimizations
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
|
||||
|
||||
#run the optimized model
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
input_ids = tokenizer.encode(input_str, ...)
|
||||
output_ids = model.generate(input_ids, ...)
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
|
||||
**For more details, please refer to the bigdl-llm** `Readme <https://github.com/intel-analytics/BigDL/tree/main/python/llm>`_, `Tutorial <https://github.com/intel-analytics/bigdl-llm-tutorial>`_ and `API Doc <https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html>`_.
|
||||
|
||||
- **[Update] Over a dozen models have been verified on** `bigdl-llm <https://github.com/intel-analytics/BigDL/tree/main/python/llm>`_, including *LLaMA/LLaMA2, ChatGLM/ChatGLM2, MPT, Falcon, Dolly-v1/Dolly-v2, StarCoder, Whisper, QWen, Baichuan,* and more; see the complete list `here <https://github.com/intel-analytics/BigDL/tree/main/python/llm/README.md#verified-models>`_.
|
||||
------
|
||||
|
||||
Overview
|
||||
Overview of the complete BigDL project
|
||||
---------------------------------
|
||||
`BigDL <https://github.com/intel-analytics/bigdl>`_ seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue