LLM: update split qkv native sdp. (#10895)
* LLM: update split qkv native sdp. * fix typo.
This commit is contained in:
parent
990535b1cf
commit
9752ffe979
2 changed files with 9 additions and 16 deletions
|
|
@ -258,16 +258,14 @@ def chatglm2_quantized_attention_forward_8eb45c(
|
||||||
query_split = torch.split(query_layer, block_size, dim=1)
|
query_split = torch.split(query_layer, block_size, dim=1)
|
||||||
key_split = torch.split(key, block_size, dim=1)
|
key_split = torch.split(key, block_size, dim=1)
|
||||||
value_split = torch.split(value, block_size, dim=1)
|
value_split = torch.split(value, block_size, dim=1)
|
||||||
context_layer = torch.empty(batch_size, n_head, seq_len,
|
results = []
|
||||||
head_dim, dtype=key.dtype).to(query_layer.device)
|
|
||||||
idx = 0
|
|
||||||
for q, k, v in zip(query_split, key_split, value_split):
|
for q, k, v in zip(query_split, key_split, value_split):
|
||||||
if attention_mask is None:
|
if attention_mask is None:
|
||||||
result = F.scaled_dot_product_attention(q, k, v, is_causal=True)
|
result = F.scaled_dot_product_attention(q, k, v, is_causal=True)
|
||||||
else:
|
else:
|
||||||
result = F.scaled_dot_product_attention(q, k, v, attention_mask)
|
result = F.scaled_dot_product_attention(q, k, v, attention_mask)
|
||||||
context_layer[:, idx:idx+q.shape[1], :, :] = result
|
results.append(result)
|
||||||
idx = idx + q.shape[1]
|
context_layer = torch.cat(results, dim=1)
|
||||||
else:
|
else:
|
||||||
if attention_mask is None:
|
if attention_mask is None:
|
||||||
context_layer = F.scaled_dot_product_attention(query_layer, key,
|
context_layer = F.scaled_dot_product_attention(query_layer, key,
|
||||||
|
|
@ -541,14 +539,11 @@ def core_attn_forward_8eb45c(query_layer, key_layer, value_layer, attention_mask
|
||||||
query_split = torch.split(query_layer.to(key_layer.dtype), block_size, dim=1)
|
query_split = torch.split(query_layer.to(key_layer.dtype), block_size, dim=1)
|
||||||
key_split = torch.split(key_layer, block_size, dim=1)
|
key_split = torch.split(key_layer, block_size, dim=1)
|
||||||
value_split = torch.split(value_layer, block_size, dim=1)
|
value_split = torch.split(value_layer, block_size, dim=1)
|
||||||
batch_size, n_head, seq_len, head_dim = query_layer.shape
|
results = []
|
||||||
context_layer = torch.empty(batch_size, n_head, seq_len,
|
|
||||||
head_dim, dtype=key_layer.dtype).to(query_layer.device)
|
|
||||||
idx = 0
|
|
||||||
for q, k, v in zip(query_split, key_split, value_split):
|
for q, k, v in zip(query_split, key_split, value_split):
|
||||||
result = F.scaled_dot_product_attention(q, k, v, is_causal=True).to(k.dtype)
|
result = F.scaled_dot_product_attention(q, k, v, is_causal=True).to(k.dtype)
|
||||||
context_layer[:, idx:idx+q.shape[1], :, :] = result
|
results.append(result)
|
||||||
idx = idx + q.shape[1]
|
context_layer = torch.cat(results, dim=1)
|
||||||
else:
|
else:
|
||||||
context_layer = F.scaled_dot_product_attention(query_layer.to(key_layer.dtype),
|
context_layer = F.scaled_dot_product_attention(query_layer.to(key_layer.dtype),
|
||||||
key_layer,
|
key_layer,
|
||||||
|
|
|
||||||
|
|
@ -1423,8 +1423,7 @@ def native_sdp_split_qkv_tensor(query, key, value, attention_mask,
|
||||||
query_split = torch.split(query.to(key.dtype), block_size, dim=1)
|
query_split = torch.split(query.to(key.dtype), block_size, dim=1)
|
||||||
key_split = torch.split(key.transpose(2, 3), block_size, dim=1)
|
key_split = torch.split(key.transpose(2, 3), block_size, dim=1)
|
||||||
value_split = torch.split(value, block_size, dim=1)
|
value_split = torch.split(value, block_size, dim=1)
|
||||||
attn_output = torch.empty(bsz, num_heads, q_len, head_dim).to(query.device)
|
attn_outputs = []
|
||||||
idx = 0
|
|
||||||
for q, k, v in zip(query_split, key_split, value_split):
|
for q, k, v in zip(query_split, key_split, value_split):
|
||||||
attn_weights_split = torch.matmul(q, k) / math.sqrt(head_dim)
|
attn_weights_split = torch.matmul(q, k) / math.sqrt(head_dim)
|
||||||
block_actual_size = attn_weights_split.size(1)
|
block_actual_size = attn_weights_split.size(1)
|
||||||
|
|
@ -1442,9 +1441,8 @@ def native_sdp_split_qkv_tensor(query, key, value, attention_mask,
|
||||||
f"but is {attention_mask.size()}")
|
f"but is {attention_mask.size()}")
|
||||||
attn_weights_split = attn_weights_split + attention_mask
|
attn_weights_split = attn_weights_split + attention_mask
|
||||||
attn_weights_split = nn.functional.softmax(attn_weights_split, dim=-1)
|
attn_weights_split = nn.functional.softmax(attn_weights_split, dim=-1)
|
||||||
attn_weights_split = torch.matmul(attn_weights_split, v)
|
attn_outputs.append(torch.matmul(attn_weights_split, v))
|
||||||
attn_output[:, idx:idx+block_actual_size, :, :] = attn_weights_split
|
attn_output = torch.cat(attn_outputs, dim=1)
|
||||||
idx = idx + block_actual_size
|
|
||||||
return attn_output.to(key.dtype), None
|
return attn_output.to(key.dtype), None
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue