LLM: add falcon example on arc (#8742)
This commit is contained in:
parent
8c55911308
commit
97283c033c
3 changed files with 1306 additions and 0 deletions
|
|
@ -0,0 +1,73 @@
|
||||||
|
# Falcon
|
||||||
|
|
||||||
|
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Falcon models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) as a reference Falcon model.
|
||||||
|
|
||||||
|
## 0. Requirements
|
||||||
|
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for a Falcon model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9
|
||||||
|
conda activate llm
|
||||||
|
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||||
|
# you can install specific ipex/torch version for your need
|
||||||
|
pip install bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||||
|
pip install einops # additional package required for falcon-7b-instruct to conduct generation
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. (Optional) Download Model and Replace File
|
||||||
|
If you select the Falcon model ([tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct)), please note that their code (`modelling_RW.py`) does not support KV cache at the moment. To address issue, we have provided updated file ([falcon-7b-instruct/modelling_RW.py](./falcon-7b-instruct/modelling_RW.py)), which can be used to achieve the best performance using BigDL-LLM INT4 optimizations with KV cache support.
|
||||||
|
|
||||||
|
|
||||||
|
#### 2.1 Download Model
|
||||||
|
You could use the following code to download [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) with a specific snapshot id. Please note that the `modelling_RW.py` files that we provide are based on these specific commits.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from huggingface_hub import snapshot_download
|
||||||
|
|
||||||
|
# for tiiuae/falcon-7b-instruct
|
||||||
|
model_path = snapshot_download(repo_id='tiiuae/falcon-7b-instruct',
|
||||||
|
revision="c7f670a03d987254220f343c6b026ea0c5147185",
|
||||||
|
cache_dir="dir/path/where/model/files/are/downloaded")
|
||||||
|
print(f'tiiuae/falcon-7b-instruct checkpoint is downloaded to {model_path}')
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 2.2 Replace `modelling_RW.py`
|
||||||
|
For `tiiuae/falcon-7b-instruct`, you should replace the `modelling_RW.py` with [falcon-7b-instruct/modelling_RW.py](./falcon-7b-instruct/modelling_RW.py).
|
||||||
|
|
||||||
|
|
||||||
|
### 3. Configures OneAPI environment variables
|
||||||
|
```bash
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4. Run
|
||||||
|
|
||||||
|
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export USE_XETLA=OFF
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Falcon model (e.g. `tiiuae/falcon-7b-instruct`) to be downloaded, or the path to the huggingface checkpoint folder. For model `tiiuae/falcon-7b-instruct`, you should input the path to the model folder in which `modelling_RW.py` has been replaced.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
#### Sample Output
|
||||||
|
#### [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct)
|
||||||
|
```log
|
||||||
|
Inference time: xxxx s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
<human> What is AI? <bot>
|
||||||
|
-------------------- Output --------------------
|
||||||
|
<human> What is AI? <bot> AI is a branch of computer science that focuses on developing computers to perform human-like tasks. <human> What are some examples of these tasks?
|
||||||
|
```
|
||||||
File diff suppressed because it is too large
Load diff
|
|
@ -0,0 +1,74 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
import intel_extension_for_pytorch as ipex
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
FALCON_PROMPT_FORMAT = "<human> {prompt} <bot>"
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Falcon model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str,
|
||||||
|
help='The huggingface repo id for the Falcon model to be downloaded, '
|
||||||
|
'or the path to the huggingface checkpoint folder. '
|
||||||
|
'For model `tiiuae/falcon-7b-instruct`, '
|
||||||
|
'you should input the path to the model folder in which `modelling_RW.py` has been replaced')
|
||||||
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
# Load model in 4 bit,
|
||||||
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
optimize_model=False,
|
||||||
|
trust_remote_code=True)
|
||||||
|
model = model.half().to('xpu')
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||||
|
trust_remote_code=True)
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = FALCON_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||||
|
st = time.time()
|
||||||
|
# if your selected model is capable of utilizing previous key/value attentions
|
||||||
|
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||||
|
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||||
|
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
torch.xpu.synchronize()
|
||||||
|
end = time.time()
|
||||||
|
output = output.cpu()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Prompt', '-'*20)
|
||||||
|
print(prompt)
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
Loading…
Reference in a new issue