diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/dolly-v2/README.md b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/dolly-v2/README.md index 7ef54e16..7db4b604 100644 --- a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/dolly-v2/README.md +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/dolly-v2/README.md @@ -11,11 +11,25 @@ We suggest using conda to manage environment: ```bash conda create -n llm python=3.9 conda activate llm - -pip install bigdl-llm[all] # install bigdl-llm with 'all' option +# below command will install intel_extension_for_pytorch==2.0.110+xpu as default +# you can install specific ipex/torch version for your need +pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu +``` + +### 2. Configures OneAPI environment variables +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Run + +For optimal performance on Arc, it is recommended to set several environment variables. + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 ``` -### 2. Run ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` @@ -25,30 +39,7 @@ Arguments info: - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. -> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. -> -> Please select the appropriate size of the Dolly v2 model based on the capabilities of your machine. - -#### 2.1 Client -On client Windows machine, it is recommended to run directly with full utilization of all cores: -```powershell -python ./generate.py -``` - -#### 2.2 Server -For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. - -E.g. on Linux, -```bash -# set BigDL-Nano env variables -source bigdl-nano-init - -# e.g. for a server with 48 cores per socket -export OMP_NUM_THREADS=48 -numactl -C 0-47 -m 0 python ./generate.py -``` - -#### 2.3 Sample Output +#### Sample Output #### [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b) ```log Inference time: xxxx s