fix qlora finetune example (#12769)
This commit is contained in:
parent
094a25b740
commit
9697197f3e
8 changed files with 55 additions and 39 deletions
|
|
@ -17,9 +17,9 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install transformers==4.36.0 datasets
|
||||
pip install transformers==4.45.0 "trl<0.12.0" datasets
|
||||
pip install peft==0.10.0
|
||||
pip install bitsandbytes scipy
|
||||
pip install bitsandbytes==0.45.1 scipy
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
|
|
|
|||
|
|
@ -18,7 +18,7 @@ import torch
|
|||
import os
|
||||
|
||||
import transformers
|
||||
from transformers import LlamaTokenizer
|
||||
from transformers import AutoTokenizer
|
||||
from peft import LoraConfig
|
||||
from transformers import BitsAndBytesConfig
|
||||
from ipex_llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training
|
||||
|
|
@ -43,13 +43,13 @@ if __name__ == "__main__":
|
|||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
dataset_path = args.dataset
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
if dataset_path.endswith(".json") or dataset_path.endswith(".jsonl"):
|
||||
data = load_dataset("json", data_files=dataset_path)
|
||||
else:
|
||||
data = load_dataset(dataset_path)
|
||||
|
||||
|
||||
# For illustration purpose, only use part of data to train
|
||||
data = data["train"].train_test_split(train_size=0.1, shuffle=False)
|
||||
|
||||
|
|
@ -57,7 +57,7 @@ if __name__ == "__main__":
|
|||
prompter = Prompter("alpaca")
|
||||
train_data, _ = get_train_val_data(data, tokenizer, prompter, train_on_inputs=True,
|
||||
add_eos_token=False, cutoff_len=256, val_set_size=0, seed=42)
|
||||
|
||||
|
||||
bnb_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_use_double_quant=False,
|
||||
|
|
@ -79,11 +79,11 @@ if __name__ == "__main__":
|
|||
# model.gradient_checkpointing_enable()
|
||||
model = prepare_model_for_kbit_training(model)
|
||||
config = LoraConfig(
|
||||
r=8,
|
||||
lora_alpha=32,
|
||||
target_modules=["q_proj", "k_proj", "v_proj"],
|
||||
lora_dropout=0.05,
|
||||
bias="none",
|
||||
r=8,
|
||||
lora_alpha=32,
|
||||
target_modules=["q_proj", "k_proj", "v_proj"],
|
||||
lora_dropout=0.05,
|
||||
bias="none",
|
||||
task_type="CAUSAL_LM",
|
||||
)
|
||||
model = get_peft_model(model, config)
|
||||
|
|
|
|||
|
|
@ -17,9 +17,9 @@ conda create -n llm python=3.11
|
|||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
pip install transformers==4.36.0 datasets
|
||||
pip install transformers==4.45.0 "trl<0.12.0" datasets
|
||||
pip install peft==0.10.0
|
||||
pip install bitsandbytes scipy trl==0.9.6
|
||||
pip install bitsandbytes==0.45.1 scipy
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
|
|
@ -39,13 +39,13 @@ python ./qlora_finetuning.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH
|
|||
{'loss': 3.1854, 'learning_rate': 1.7777777777777777e-05, 'epoch': 0.03}
|
||||
{'loss': 3.0359, 'learning_rate': 1.555555555555556e-05, 'epoch': 0.05}
|
||||
{'loss': 2.9661, 'learning_rate': 1.3333333333333333e-05, 'epoch': 0.06}
|
||||
{'loss': 2.7779, 'learning_rate': 1.1111111111111113e-05, 'epoch': 0.08}
|
||||
{'loss': 2.7779, 'learning_rate': 1.1111111111111113e-05, 'epoch': 0.08}
|
||||
{'loss': 2.7795, 'learning_rate': 8.888888888888888e-06, 'epoch': 0.09}
|
||||
{'loss': 2.5149, 'learning_rate': 6.666666666666667e-06, 'epoch': 0.11}
|
||||
{'loss': 2.5759, 'learning_rate': 4.444444444444444e-06, 'epoch': 0.12}
|
||||
{'loss': 2.5976, 'learning_rate': 2.222222222222222e-06, 'epoch': 0.14}
|
||||
{'loss': 2.5744, 'learning_rate': 0.0, 'epoch': 0.15}
|
||||
{'train_runtime': 116.1914, 'train_samples_per_second': 6.885, 'train_steps_per_second': 1.721, 'train_loss': 2.819730052947998, 'epoch': 0.15}
|
||||
{'train_runtime': 116.1914, 'train_samples_per_second': 6.885, 'train_steps_per_second': 1.721, 'train_loss': 2.819730052947998, 'epoch': 0.15}
|
||||
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [01:56<00:00, 1.72it/s]
|
||||
TrainOutput(global_step=200, training_loss=2.819730052947998, metrics={'train_runtime': 116.1914, 'train_samples_per_second': 6.885, 'train_steps_per_second': 1.721, 'train_loss': 2.819730052947998, 'epoch': 0.15})
|
||||
```
|
||||
|
|
|
|||
|
|
@ -18,7 +18,7 @@ import torch
|
|||
import os
|
||||
|
||||
import transformers
|
||||
from transformers import LlamaTokenizer
|
||||
from transformers import AutoTokenizer
|
||||
from peft import LoraConfig
|
||||
from transformers import BitsAndBytesConfig
|
||||
from ipex_llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training
|
||||
|
|
@ -44,7 +44,7 @@ if __name__ == "__main__":
|
|||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
dataset_path = args.dataset
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
# Avoid tokenizer doesn't have a padding token
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
|
@ -53,7 +53,7 @@ if __name__ == "__main__":
|
|||
data = load_dataset("json", data_files=dataset_path)
|
||||
else:
|
||||
data = load_dataset(dataset_path)
|
||||
|
||||
|
||||
# For illustration purpose, only use part of data to train
|
||||
data = data["train"].train_test_split(train_size=0.1, shuffle=False)
|
||||
|
||||
|
|
@ -82,11 +82,11 @@ if __name__ == "__main__":
|
|||
# it will slowdown the training speed
|
||||
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
|
||||
config = LoraConfig(
|
||||
r=8,
|
||||
lora_alpha=32,
|
||||
target_modules=["q_proj", "k_proj", "v_proj"],
|
||||
lora_dropout=0.05,
|
||||
bias="none",
|
||||
r=8,
|
||||
lora_alpha=32,
|
||||
target_modules=["q_proj", "k_proj", "v_proj"],
|
||||
lora_dropout=0.05,
|
||||
bias="none",
|
||||
task_type="CAUSAL_LM",
|
||||
)
|
||||
model = get_peft_model(model, config)
|
||||
|
|
|
|||
|
|
@ -51,7 +51,8 @@ from torch import Tensor, dtype, nn
|
|||
from operator import mul
|
||||
from functools import reduce
|
||||
from ipex_llm.transformers.xpu_customize_fwd import custom_fwd, custom_bwd
|
||||
from ipex_llm.transformers.utils import get_autocast_dtype, get_xpu_device_name
|
||||
from ipex_llm.transformers.utils import is_autocast_enabled, get_autocast_dtype
|
||||
from ipex_llm.transformers.utils import get_xpu_device_name
|
||||
from ipex_llm.transformers.convert import is_deepspeed_available, get_use_vllm
|
||||
|
||||
T = TypeVar("T", bound="torch.nn.Module")
|
||||
|
|
@ -527,8 +528,8 @@ class MatMulLowBit(torch.autograd.Function):
|
|||
A, weight = ctx.tensors
|
||||
grad_A, grad_weight = None, None
|
||||
if req_gradA:
|
||||
if torch.xpu.is_autocast_xpu_enabled():
|
||||
grad_output = grad_output.to(torch.xpu.get_autocast_xpu_dtype())
|
||||
if is_autocast_enabled("xpu"):
|
||||
grad_output = grad_output.to(get_autocast_dtype("xpu"))
|
||||
if weight.qtype == NF4:
|
||||
dequant_weight = xe_linear.dequant(A,
|
||||
weight.data.view(torch.uint8),
|
||||
|
|
@ -615,7 +616,7 @@ class LowBitLinear(nn.Linear):
|
|||
is_training = self.training and not torch.is_inference_mode_enabled()
|
||||
if is_training:
|
||||
# below logic is only for training
|
||||
autocast_dtype = get_autocast_dtype(x)
|
||||
autocast_dtype = get_autocast_dtype(x.device.type)
|
||||
if self.compute_dtype is not None and x.device.type == "xpu":
|
||||
x = x.to(self.compute_dtype) # solve GC issue for unlora module
|
||||
elif autocast_dtype is not None:
|
||||
|
|
|
|||
|
|
@ -109,7 +109,7 @@ class LoraLowBitLinear(Module, LoraLayer):
|
|||
self.qa_pool = torch.nn.Identity()
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
autocast_dtype = get_autocast_dtype(x)
|
||||
autocast_dtype = get_autocast_dtype(x.device.type)
|
||||
if x.device.type == "xpu":
|
||||
# force to use bf16 on gpu
|
||||
x = x.to(torch.bfloat16)
|
||||
|
|
@ -177,7 +177,7 @@ class LoraBF16Linear(Module, LoraLayer):
|
|||
self.is_target_conv_1d_layer = is_target_conv_1d_layer
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
autocast_dtype = get_autocast_dtype(x)
|
||||
autocast_dtype = get_autocast_dtype(x.device.type)
|
||||
if x.device.type == "xpu":
|
||||
# force to use bf16 on gpu
|
||||
x = x.to(torch.bfloat16)
|
||||
|
|
|
|||
|
|
@ -138,26 +138,39 @@ def fix_key(key):
|
|||
return key
|
||||
|
||||
|
||||
def get_autocast_dtype(x):
|
||||
def is_autocast_enabled(device_type: str):
|
||||
if torch.__version__ >= '2.3':
|
||||
if torch.is_autocast_enabled(x.device.type):
|
||||
return torch.get_autocast_dtype(x.device.type)
|
||||
return torch.is_autocast_enabled(device_type)
|
||||
else:
|
||||
if device_type == "xpu":
|
||||
return torch.xpu.is_autocast_xpu_enabled()
|
||||
elif device_type == "cpu":
|
||||
return torch.is_autocast_cpu_enabled()
|
||||
else:
|
||||
invalidInputError(False,
|
||||
f"Device type {device_type} is not supported.")
|
||||
|
||||
|
||||
def get_autocast_dtype(device_type: str):
|
||||
if torch.__version__ >= '2.3':
|
||||
if torch.is_autocast_enabled(device_type):
|
||||
return torch.get_autocast_dtype(device_type)
|
||||
else:
|
||||
return None
|
||||
else:
|
||||
if x.device.type == "xpu":
|
||||
if device_type == "xpu":
|
||||
if torch.xpu.is_autocast_xpu_enabled():
|
||||
return torch.xpu.get_autocast_xpu_dtype()
|
||||
else:
|
||||
return None
|
||||
elif x.device.type == "cpu":
|
||||
elif device_type == "cpu":
|
||||
if torch.is_autocast_cpu_enabled():
|
||||
return torch.get_autocast_cpu_dtype()
|
||||
else:
|
||||
return None
|
||||
else:
|
||||
invalidInputError(False,
|
||||
f"Device {x.device} is not supported.")
|
||||
f"Device type {device_type} is not supported.")
|
||||
|
||||
|
||||
def get_xpu_device_name(device: torch.device):
|
||||
|
|
|
|||
|
|
@ -107,6 +107,8 @@ except ModuleNotFoundError:
|
|||
np = None # type: ignore[assignment]
|
||||
from typing import Any
|
||||
|
||||
from ipex_llm.transformers.utils import is_autocast_enabled, get_autocast_dtype
|
||||
|
||||
|
||||
def _cast(value, dtype):
|
||||
if isinstance(value, torch.Tensor):
|
||||
|
|
@ -155,12 +157,12 @@ def custom_fwd(fwd=None, *, cast_inputs=None):
|
|||
|
||||
@functools.wraps(fwd)
|
||||
def decorate_fwd(*args, **kwargs):
|
||||
args[0]._dtype = torch.xpu.get_autocast_xpu_dtype()
|
||||
args[0]._dtype = get_autocast_dtype("xpu")
|
||||
if cast_inputs is None:
|
||||
args[0]._fwd_used_autocast = torch.xpu.is_autocast_xpu_enabled()
|
||||
args[0]._fwd_used_autocast = is_autocast_enabled("xpu")
|
||||
return fwd(*args, **kwargs)
|
||||
else:
|
||||
autocast_context = torch.xpu.is_autocast_xpu_enabled()
|
||||
autocast_context = is_autocast_enabled("xpu")
|
||||
args[0]._fwd_used_autocast = False
|
||||
if autocast_context:
|
||||
with torch.xpu.autocast(enabled=False):
|
||||
|
|
@ -184,7 +186,7 @@ def custom_bwd(bwd):
|
|||
|
||||
@functools.wraps(bwd)
|
||||
def decorate_bwd(*args, **kwargs):
|
||||
with torch.xpu.autocast(enabled=args[0]._fwd_used_autocast, dtype=args[0]._dtype):
|
||||
with torch.autocast("xpu", enabled=args[0]._fwd_used_autocast, dtype=args[0]._dtype):
|
||||
return bwd(*args, **kwargs)
|
||||
|
||||
return decorate_bwd
|
||||
|
|
|
|||
Loading…
Reference in a new issue