add transpose_value_cache for NPU benchmark (#12092)
* add `transpose_value_cache` * update * update
This commit is contained in:
parent
f7fb3c896c
commit
9650bf616a
2 changed files with 12 additions and 7 deletions
|
|
@ -41,3 +41,4 @@ streaming: False # whether output in streaming way (only available now for gpu w
|
|||
optimize_model: False # whether apply further optimization on NPU (only available now for transformers_int4_npu_win test_api)
|
||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
|
||||
task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
|
||||
transpose_value_cache: True # whether apply transposed v_cache optimization on NPU (only available now for transformers_int4_npu_win test_api)
|
||||
|
|
@ -136,7 +136,7 @@ def preprocess_prompt(tokenizer, in_len, task):
|
|||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
return input_ids
|
||||
|
||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False, task='continuation', optimize_model=False):
|
||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False, task='continuation', optimize_model=False, transpose_value_cache=True):
|
||||
# TODO: make a parameter
|
||||
result= {}
|
||||
if test_api == 'transformer_int4':
|
||||
|
|
@ -188,7 +188,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
elif test_api == 'pipeline_parallel_gpu':
|
||||
result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype)
|
||||
elif test_api == 'transformers_int4_npu_win':
|
||||
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model)
|
||||
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model, transpose_value_cache)
|
||||
else:
|
||||
invalidInputError(False, "Unknown test_api " + test_api + ", please check your config.yaml.")
|
||||
|
||||
|
|
@ -604,7 +604,8 @@ def transformers_int4_npu_win(repo_id,
|
|||
num_beams,
|
||||
low_bit,
|
||||
batch_size,
|
||||
optimize_model):
|
||||
optimize_model,
|
||||
transpose_value_cache):
|
||||
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, LlamaTokenizer
|
||||
|
||||
|
|
@ -616,17 +617,17 @@ def transformers_int4_npu_win(repo_id,
|
|||
st = time.perf_counter()
|
||||
if repo_id in CHATGLM_IDS:
|
||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=True,
|
||||
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=transpose_value_cache,
|
||||
torch_dtype=torch.float16, attn_implementation="eager").eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
elif repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype=torch.float16,
|
||||
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=True,
|
||||
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=transpose_value_cache,
|
||||
use_cache=True, attn_implementation="eager").eval()
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype=torch.float16,
|
||||
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=True,
|
||||
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=transpose_value_cache,
|
||||
use_cache=True, attn_implementation="eager").eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
end = time.perf_counter()
|
||||
|
|
@ -2033,6 +2034,9 @@ if __name__ == '__main__':
|
|||
if 'optimize_model' in conf:
|
||||
optimize_model = conf['optimize_model']
|
||||
lookahead = False
|
||||
transpose_value_cache = True
|
||||
if 'transpose_value_cache' in conf:
|
||||
transpose_value_cache = conf['transpose_value_cache']
|
||||
|
||||
import pandas as pd
|
||||
for api in conf.test_api:
|
||||
|
|
@ -2058,7 +2062,7 @@ if __name__ == '__main__':
|
|||
if task in ['QA', 'summarize'] and conf['num_beams'] == 1 and batch_size == 1:
|
||||
lookahead = True
|
||||
run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
|
||||
conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, lookahead, task, optimize_model)
|
||||
conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, lookahead, task, optimize_model, transpose_value_cache)
|
||||
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
|
||||
'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
|
||||
'model loading time (s)', 'peak mem (GB)', 'streaming', 'use_fp16_torch_dtype'])
|
||||
|
|
|
|||
Loading…
Reference in a new issue