LLM: Rename low bit layer (#8875)

* rename lowbit

---------

Co-authored-by: leonardozcm <leonardozcm@gmail.com>
This commit is contained in:
Zhao Changmin 2023-09-05 13:21:12 +08:00 committed by GitHub
parent 74a2c2ddf5
commit 95271f10e0
5 changed files with 24 additions and 23 deletions

View file

@ -14,7 +14,7 @@
# limitations under the License.
#
from .transformers import ggml_convert_quant
from .transformers import ggml_convert_low_bit
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
from bigdl.llm.utils.common import invalidInputError
@ -34,4 +34,4 @@ def optimize_model(model, low_bit='sym_int4', optimize_llm=True):
f"Unknown load_in_low_bit value: {low_bit}, expected:"
f" sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.")
qtype = ggml_tensor_qtype[low_bit]
return ggml_convert_quant(model, qtype=qtype, optimize_model=optimize_llm)
return ggml_convert_low_bit(model, qtype=qtype, optimize_model=optimize_llm)

View file

@ -14,7 +14,8 @@
# limitations under the License.
#
from .convert import ggml_convert_quant
from .convert import ggml_convert_low_bit
from .model import AutoModelForCausalLM, AutoModel, AutoModelForSeq2SeqLM, \
AutoModelForSpeechSeq2Seq, AutoModelForQuestionAnswering, \
AutoModelForSequenceClassification, AutoModelForMaskedLM, \

View file

@ -43,9 +43,9 @@ import transformers
import importlib
def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
current_key_name=None):
from bigdl.llm.transformers.linear_quant import LinearQuant, FP4Params
def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
current_key_name=None):
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, FP4Params
has_been_replaced = False
for name, module in model.named_children():
@ -56,7 +56,7 @@ def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
with init_empty_weights():
new_linear = LinearQuant(
new_linear = LowBitLinear(
module.in_features,
module.out_features,
qtype,
@ -65,12 +65,12 @@ def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
device_type = module.weight.data.device.type
# Copy the weights
paramsQuant = FP4Params(data=module.weight.data,
requires_grad=False,
quantized=False,
_shape=None,
qtype=qtype).to(device_type)
new_linear._parameters['weight'] = paramsQuant
paramsLowBit = FP4Params(data=module.weight.data,
requires_grad=False,
quantized=False,
_shape=None,
qtype=qtype).to(device_type)
new_linear._parameters['weight'] = paramsLowBit
if module.bias is not None:
new_linear._parameters['bias'] = nn.Parameter(module.bias.data)\
@ -85,7 +85,7 @@ def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
# Remove the last key for recursion
if len(list(module.children())) > 0:
_, _flag = _replace_with_quant_linear(
_, _flag = _replace_with_low_bit_linear(
module,
qtype,
modules_to_not_convert,
@ -95,9 +95,9 @@ def _replace_with_quant_linear(model, qtype, modules_to_not_convert=None,
return model, has_been_replaced
def ggml_convert_quant(model, qtype, optimize_model=True, device="cpu"):
def ggml_convert_low_bit(model, qtype, optimize_model=True, device="cpu"):
modules_to_not_convert = [] # ["lm_head"]
model, has_been_replaced = _replace_with_quant_linear(
model, has_been_replaced = _replace_with_low_bit_linear(
model, qtype, modules_to_not_convert, None
)
if not has_been_replaced:

View file

@ -60,7 +60,7 @@ TORCH_LINEAR_THRESHOLD = 96
SYM_INT4 = ggml_tensor_qtype["sym_int4"]
def ggml_convert_quant(tensor: torch.Tensor, qtype: int, device=None):
def ggml_convert_qtype(tensor: torch.Tensor, qtype: int, device=None):
QK = ggml.ggml_qk_size(qtype)
block_size_in_bytes = ggml.ggml_type_size(qtype)
@ -123,7 +123,7 @@ class FP4Params(torch.nn.Parameter):
def quantize(self, device=None):
if not self.quantized:
w = self.data.contiguous().float()
w_quantized = ggml_convert_quant(w, self.qtype,
w_quantized = ggml_convert_qtype(w, self.qtype,
device=device)
self.data = w_quantized
self.quantized = True
@ -212,7 +212,7 @@ def ggml_matmul_src1_x_src0_t(src0: torch.Tensor,
return result_t
class LinearQuant(nn.Linear):
class LowBitLinear(nn.Linear):
def __init__(self, input_features, output_features, qtype, bias=True):
super().__init__(input_features, output_features, bias)
self.weight = FP4Params(self.weight.data,

View file

@ -98,7 +98,7 @@ class _BaseAutoModelClass:
@classmethod
def load_convert(cls, q_k, optimize_model, *args, **kwargs):
from .convert import ggml_convert_quant
from .convert import ggml_convert_low_bit
invalidInputError(q_k in ggml_tensor_qtype,
f"Unknown load_in_low_bit value: {q_k}, expected:"
f" sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.")
@ -117,7 +117,7 @@ class _BaseAutoModelClass:
model = cls.HF_Model.from_pretrained(*_args, **_kwargs)
model.config.update({"bigdl_lcmu_enabled": False})
model = model.to("cpu")
model = ggml_convert_quant(model, qtype, optimize_model)
model = ggml_convert_low_bit(model, qtype, optimize_model)
model.config.update({"bigdl_transformers_low_bit": q_k})
# add save_low_bit to pretrained model dynamically
@ -139,7 +139,7 @@ class _BaseAutoModelClass:
from transformers.generation.configuration_utils import GenerationConfig
from transformers.models.auto.auto_factory import _get_model_class
from accelerate.big_modeling import init_empty_weights
from .convert import ggml_convert_quant
from .convert import ggml_convert_low_bit
import copy
import os
@ -252,7 +252,7 @@ class _BaseAutoModelClass:
# Loading args may differ based on their usage
quant_device = "meta" if bigdl_lcmu_enabled else "cpu"
model = ggml_convert_quant(model, qtype, optimize_model, device=quant_device)
model = ggml_convert_low_bit(model, qtype, optimize_model, device=quant_device)
if is_sharded:
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]