[PPML]Upgrade PPML image version to 2.1.0-SNAPSHOT in readthedoc (#4253)
* Upgrade PPML image version to 2.1.0-SNAPSHOT in readthedoc
This commit is contained in:
		
							parent
							
								
									d473177599
								
							
						
					
					
						commit
						93ea53e1e4
					
				
					 4 changed files with 12 additions and 12 deletions
				
			
		| 
						 | 
				
			
			@ -87,7 +87,7 @@ cd BigDL/ppml/
 | 
			
		|||
 | 
			
		||||
Pull Docker image from Dockerhub
 | 
			
		||||
```bash
 | 
			
		||||
docker pull intelanalytics/bigdl-ppml-trusted-big-data-ml-scala-graphene:0.14.0-SNAPSHOT
 | 
			
		||||
docker pull intelanalytics/bigdl-ppml-trusted-big-data-ml-scala-graphene:2.1.0-SNAPSHOT
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Alternatively, you can build Docker image from Dockerfile (this will take some time):
 | 
			
		||||
| 
						 | 
				
			
			@ -263,7 +263,7 @@ Then stop the service:
 | 
			
		|||
Pull Docker image from Dockerhub
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
docker pull intelanalytics/bigdl-ppml-trusted-big-data-ml-python-graphene:0.14-SNAPSHOT
 | 
			
		||||
docker pull intelanalytics/bigdl-ppml-trusted-big-data-ml-python-graphene:2.1.0-SNAPSHOT
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Alternatively, you can build Docker image from Dockerfile (this will take some time):
 | 
			
		||||
| 
						 | 
				
			
			@ -697,12 +697,12 @@ Pull Docker image from Dockerhub
 | 
			
		|||
 | 
			
		||||
```bash
 | 
			
		||||
# For Graphene
 | 
			
		||||
docker pull intelanalytics/bigdl-ppml-trusted-realtime-ml-scala-graphene:0.14.0-SNAPSHOT
 | 
			
		||||
docker pull intelanalytics/bigdl-ppml-trusted-realtime-ml-scala-graphene:2.1.0-SNAPSHOT
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
# For Occlum
 | 
			
		||||
docker pull intelanalytics/bigdl-ppml-trusted-realtime-ml-scala-occlum:0.14.0-SNAPSHOT
 | 
			
		||||
docker pull intelanalytics/bigdl-ppml-trusted-realtime-ml-scala-occlum:2.1.0-SNAPSHOT
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Also, you can build Docker image from Dockerfile (this will take some time).
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -7,11 +7,11 @@ BigDL helps to build PPML applications (including big data analytics, machine le
 | 
			
		|||
1. Big Data analytics and ML/DL (supporting [Apache Spark](https://spark.apache.org/) and [BigDL](https://github.com/intel-analytics/BigDL))
 | 
			
		||||
2. Realtime compute and ML/DL (supporting [Apache Flink](https://flink.apache.org/) and BigDL [Cluster Serving](https://www.usenix.org/conference/opml20/presentation/song))
 | 
			
		||||
 | 
			
		||||
## [1. Trusted Big Data ML](https://github.com/intel-analytics/BigDL/tree/branch-2.0/ppml/trusted-big-data-ml)
 | 
			
		||||
## [1. Trusted Big Data ML](https://github.com/intel-analytics/BigDL/tree/main/ppml/trusted-big-data-ml)
 | 
			
		||||
 | 
			
		||||
With the trusted Big Data analytics and ML/DL support, users can run standard Spark data analysis (such as Spark SQL, Dataframe, MLlib, etc.) and distributed deep learning (using BigDL) in a secure and trusted fashion.
 | 
			
		||||
 | 
			
		||||
## [2. Trusted Real Time ML](https://github.com/intel-analytics/BigDL/tree/branch-2.0/ppml/trusted-realtime-ml/scala)
 | 
			
		||||
## [2. Trusted Real Time ML](https://github.com/intel-analytics/BigDL/tree/main/ppml/trusted-realtime-ml/scala)
 | 
			
		||||
 | 
			
		||||
With the trusted realtime compute and ML/DL support, users can run standard Flink stream processing and distributed DL model inference (using Cluster Serving) in a secure and trusted fashion.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -136,7 +136,7 @@ export OUTPUT_DIR=hdfs://$HDFS_HOST:$HDFS_PORT/tpc-h/output \
 | 
			
		|||
    --executor-cores 8 \
 | 
			
		||||
    --total-executor-cores 192 \
 | 
			
		||||
    --executor-memory 16G \
 | 
			
		||||
    --properties-file /ppml/trusted-big-data-ml/work/bigdl-0.14.0-SNAPSHOT/conf/spark-bigdl.conf \
 | 
			
		||||
    --properties-file /ppml/trusted-big-data-ml/work/bigdl-2.1.0-SNAPSHOT/conf/spark-bigdl.conf \
 | 
			
		||||
    --conf spark.kubernetes.authenticate.serviceAccountName=spark \
 | 
			
		||||
    --conf spark.kubernetes.container.image=$RUNTIME_K8S_SPARK_IMAGE \
 | 
			
		||||
    --conf spark.kubernetes.executor.podTemplateFile=/ppml/trusted-big-data-ml/spark-executor-template.yaml \
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -4,20 +4,20 @@
 | 
			
		|||
Prior to deploying PPML Cluster Serving, please make sure the following is setup
 | 
			
		||||
- Hardware that supports SGX
 | 
			
		||||
- A fully configured Kubernetes cluster
 | 
			
		||||
- Intel SGX Device Plugin to use SGX in K8S cluster (install following instructions [here](https://github.com/intel-analytics/BigDL/tree/branch-2.0/ppml/trusted-realtime-ml/scala/docker-graphene/kubernetes#deploy-the-intel-sgx-device-plugin-for-kubernetes "here"))
 | 
			
		||||
- Intel SGX Device Plugin to use SGX in K8S cluster (install following instructions [here](https://github.com/intel-analytics/BigDL/tree/main/ppml/trusted-realtime-ml/scala/docker-graphene/kubernetes#deploy-the-intel-sgx-device-plugin-for-kubernetes "here"))
 | 
			
		||||
- Java
 | 
			
		||||
 | 
			
		||||
## Deploy Trusted Realtime ML for Kubernetes ##
 | 
			
		||||
1. Pull docker image from dockerhub
 | 
			
		||||
	```
 | 
			
		||||
	$ docker pull intelanalytics/bigdl-ppml-trusted-realtime-ml-scala-graphene:0.14.0-SNAPSHOT
 | 
			
		||||
	$ docker pull intelanalytics/bigdl-ppml-trusted-realtime-ml-scala-graphene:2.1.0-SNAPSHOT
 | 
			
		||||
	```
 | 
			
		||||
2. Pull the source code of BigDL and enter PPML graphene k8s directory
 | 
			
		||||
	```
 | 
			
		||||
	$ git clone https://github.com/intel-analytics/BigDL.git
 | 
			
		||||
	$ cd BigDL/ppml/trusted-realtime-ml/scala/docker-graphene/kubernetes
 | 
			
		||||
	```
 | 
			
		||||
3. Generate secure keys and passwords, and deploy as secrets (Refer [here](https://github.com/intel-analytics/BigDL/tree/branch-2.0/ppml/trusted-realtime-ml/scala/docker-graphene/kubernetes#secure-keys-and-password) for details)
 | 
			
		||||
3. Generate secure keys and passwords, and deploy as secrets (Refer [here](https://github.com/intel-analytics/BigDL/tree/main/ppml/trusted-realtime-ml/scala/docker-graphene/kubernetes#secure-keys-and-password) for details)
 | 
			
		||||
	1. Generate keys and passwords
 | 
			
		||||
		
 | 
			
		||||
		Note: Make sure to add `${JAVA_HOME}/bin` to `$PATH` to avoid `keytool: command not found` error.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue