[PPML]Upgrade PPML image version to 2.1.0-SNAPSHOT in readthedoc (#4253)
* Upgrade PPML image version to 2.1.0-SNAPSHOT in readthedoc
This commit is contained in:
parent
d473177599
commit
93ea53e1e4
4 changed files with 12 additions and 12 deletions
|
|
@ -87,7 +87,7 @@ cd BigDL/ppml/
|
||||||
|
|
||||||
Pull Docker image from Dockerhub
|
Pull Docker image from Dockerhub
|
||||||
```bash
|
```bash
|
||||||
docker pull intelanalytics/bigdl-ppml-trusted-big-data-ml-scala-graphene:0.14.0-SNAPSHOT
|
docker pull intelanalytics/bigdl-ppml-trusted-big-data-ml-scala-graphene:2.1.0-SNAPSHOT
|
||||||
```
|
```
|
||||||
|
|
||||||
Alternatively, you can build Docker image from Dockerfile (this will take some time):
|
Alternatively, you can build Docker image from Dockerfile (this will take some time):
|
||||||
|
|
@ -263,7 +263,7 @@ Then stop the service:
|
||||||
Pull Docker image from Dockerhub
|
Pull Docker image from Dockerhub
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
docker pull intelanalytics/bigdl-ppml-trusted-big-data-ml-python-graphene:0.14-SNAPSHOT
|
docker pull intelanalytics/bigdl-ppml-trusted-big-data-ml-python-graphene:2.1.0-SNAPSHOT
|
||||||
```
|
```
|
||||||
|
|
||||||
Alternatively, you can build Docker image from Dockerfile (this will take some time):
|
Alternatively, you can build Docker image from Dockerfile (this will take some time):
|
||||||
|
|
@ -697,12 +697,12 @@ Pull Docker image from Dockerhub
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# For Graphene
|
# For Graphene
|
||||||
docker pull intelanalytics/bigdl-ppml-trusted-realtime-ml-scala-graphene:0.14.0-SNAPSHOT
|
docker pull intelanalytics/bigdl-ppml-trusted-realtime-ml-scala-graphene:2.1.0-SNAPSHOT
|
||||||
```
|
```
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# For Occlum
|
# For Occlum
|
||||||
docker pull intelanalytics/bigdl-ppml-trusted-realtime-ml-scala-occlum:0.14.0-SNAPSHOT
|
docker pull intelanalytics/bigdl-ppml-trusted-realtime-ml-scala-occlum:2.1.0-SNAPSHOT
|
||||||
```
|
```
|
||||||
|
|
||||||
Also, you can build Docker image from Dockerfile (this will take some time).
|
Also, you can build Docker image from Dockerfile (this will take some time).
|
||||||
|
|
|
||||||
|
|
@ -7,11 +7,11 @@ BigDL helps to build PPML applications (including big data analytics, machine le
|
||||||
1. Big Data analytics and ML/DL (supporting [Apache Spark](https://spark.apache.org/) and [BigDL](https://github.com/intel-analytics/BigDL))
|
1. Big Data analytics and ML/DL (supporting [Apache Spark](https://spark.apache.org/) and [BigDL](https://github.com/intel-analytics/BigDL))
|
||||||
2. Realtime compute and ML/DL (supporting [Apache Flink](https://flink.apache.org/) and BigDL [Cluster Serving](https://www.usenix.org/conference/opml20/presentation/song))
|
2. Realtime compute and ML/DL (supporting [Apache Flink](https://flink.apache.org/) and BigDL [Cluster Serving](https://www.usenix.org/conference/opml20/presentation/song))
|
||||||
|
|
||||||
## [1. Trusted Big Data ML](https://github.com/intel-analytics/BigDL/tree/branch-2.0/ppml/trusted-big-data-ml)
|
## [1. Trusted Big Data ML](https://github.com/intel-analytics/BigDL/tree/main/ppml/trusted-big-data-ml)
|
||||||
|
|
||||||
With the trusted Big Data analytics and ML/DL support, users can run standard Spark data analysis (such as Spark SQL, Dataframe, MLlib, etc.) and distributed deep learning (using BigDL) in a secure and trusted fashion.
|
With the trusted Big Data analytics and ML/DL support, users can run standard Spark data analysis (such as Spark SQL, Dataframe, MLlib, etc.) and distributed deep learning (using BigDL) in a secure and trusted fashion.
|
||||||
|
|
||||||
## [2. Trusted Real Time ML](https://github.com/intel-analytics/BigDL/tree/branch-2.0/ppml/trusted-realtime-ml/scala)
|
## [2. Trusted Real Time ML](https://github.com/intel-analytics/BigDL/tree/main/ppml/trusted-realtime-ml/scala)
|
||||||
|
|
||||||
With the trusted realtime compute and ML/DL support, users can run standard Flink stream processing and distributed DL model inference (using Cluster Serving) in a secure and trusted fashion.
|
With the trusted realtime compute and ML/DL support, users can run standard Flink stream processing and distributed DL model inference (using Cluster Serving) in a secure and trusted fashion.
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -136,7 +136,7 @@ export OUTPUT_DIR=hdfs://$HDFS_HOST:$HDFS_PORT/tpc-h/output \
|
||||||
--executor-cores 8 \
|
--executor-cores 8 \
|
||||||
--total-executor-cores 192 \
|
--total-executor-cores 192 \
|
||||||
--executor-memory 16G \
|
--executor-memory 16G \
|
||||||
--properties-file /ppml/trusted-big-data-ml/work/bigdl-0.14.0-SNAPSHOT/conf/spark-bigdl.conf \
|
--properties-file /ppml/trusted-big-data-ml/work/bigdl-2.1.0-SNAPSHOT/conf/spark-bigdl.conf \
|
||||||
--conf spark.kubernetes.authenticate.serviceAccountName=spark \
|
--conf spark.kubernetes.authenticate.serviceAccountName=spark \
|
||||||
--conf spark.kubernetes.container.image=$RUNTIME_K8S_SPARK_IMAGE \
|
--conf spark.kubernetes.container.image=$RUNTIME_K8S_SPARK_IMAGE \
|
||||||
--conf spark.kubernetes.executor.podTemplateFile=/ppml/trusted-big-data-ml/spark-executor-template.yaml \
|
--conf spark.kubernetes.executor.podTemplateFile=/ppml/trusted-big-data-ml/spark-executor-template.yaml \
|
||||||
|
|
|
||||||
|
|
@ -4,20 +4,20 @@
|
||||||
Prior to deploying PPML Cluster Serving, please make sure the following is setup
|
Prior to deploying PPML Cluster Serving, please make sure the following is setup
|
||||||
- Hardware that supports SGX
|
- Hardware that supports SGX
|
||||||
- A fully configured Kubernetes cluster
|
- A fully configured Kubernetes cluster
|
||||||
- Intel SGX Device Plugin to use SGX in K8S cluster (install following instructions [here](https://github.com/intel-analytics/BigDL/tree/branch-2.0/ppml/trusted-realtime-ml/scala/docker-graphene/kubernetes#deploy-the-intel-sgx-device-plugin-for-kubernetes "here"))
|
- Intel SGX Device Plugin to use SGX in K8S cluster (install following instructions [here](https://github.com/intel-analytics/BigDL/tree/main/ppml/trusted-realtime-ml/scala/docker-graphene/kubernetes#deploy-the-intel-sgx-device-plugin-for-kubernetes "here"))
|
||||||
- Java
|
- Java
|
||||||
|
|
||||||
## Deploy Trusted Realtime ML for Kubernetes ##
|
## Deploy Trusted Realtime ML for Kubernetes ##
|
||||||
1. Pull docker image from dockerhub
|
1. Pull docker image from dockerhub
|
||||||
```
|
```
|
||||||
$ docker pull intelanalytics/bigdl-ppml-trusted-realtime-ml-scala-graphene:0.14.0-SNAPSHOT
|
$ docker pull intelanalytics/bigdl-ppml-trusted-realtime-ml-scala-graphene:2.1.0-SNAPSHOT
|
||||||
```
|
```
|
||||||
2. Pull the source code of BigDL and enter PPML graphene k8s directory
|
2. Pull the source code of BigDL and enter PPML graphene k8s directory
|
||||||
```
|
```
|
||||||
$ git clone https://github.com/intel-analytics/BigDL.git
|
$ git clone https://github.com/intel-analytics/BigDL.git
|
||||||
$ cd BigDL/ppml/trusted-realtime-ml/scala/docker-graphene/kubernetes
|
$ cd BigDL/ppml/trusted-realtime-ml/scala/docker-graphene/kubernetes
|
||||||
```
|
```
|
||||||
3. Generate secure keys and passwords, and deploy as secrets (Refer [here](https://github.com/intel-analytics/BigDL/tree/branch-2.0/ppml/trusted-realtime-ml/scala/docker-graphene/kubernetes#secure-keys-and-password) for details)
|
3. Generate secure keys and passwords, and deploy as secrets (Refer [here](https://github.com/intel-analytics/BigDL/tree/main/ppml/trusted-realtime-ml/scala/docker-graphene/kubernetes#secure-keys-and-password) for details)
|
||||||
1. Generate keys and passwords
|
1. Generate keys and passwords
|
||||||
|
|
||||||
Note: Make sure to add `${JAVA_HOME}/bin` to `$PATH` to avoid `keytool: command not found` error.
|
Note: Make sure to add `${JAVA_HOME}/bin` to `$PATH` to avoid `keytool: command not found` error.
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue