update databricks doc (#6035)
Co-authored-by: Zhou <jian.zhou@intel.com>
This commit is contained in:
parent
d262848421
commit
936f8d2adb
1 changed files with 8 additions and 128 deletions
|
|
@ -27,8 +27,8 @@ init_script = """
|
|||
|
||||
# install other necessary libraries, here we install libraries needed in this tutorial
|
||||
/databricks/python/bin/pip install tensorflow==2.9.1
|
||||
/databricks/python/bin/pip install pyarrow==8.0.0
|
||||
/databricks/python/bin/pip install psutil
|
||||
/databricks/python/bin/pip install tqdm
|
||||
/databricks/python/bin/pip install torch==1.11.0+cpu torchvision==0.12.0+cpu tensorboard -f https://download.pytorch.org/whl/torch_stable.html
|
||||
|
||||
# copy bigdl jars to databricks
|
||||
cp /databricks/python/lib/python3.8/site-packages/bigdl/share/*/lib/*.jar /databricks/jars
|
||||
|
|
@ -54,8 +54,8 @@ Create a file **init.sh**(or any other filename) in your computer, the file cont
|
|||
|
||||
# install other necessary libraries, here we install libraries needed in this tutorial
|
||||
/databricks/python/bin/pip install tensorflow==2.9.1
|
||||
/databricks/python/bin/pip install pyarrow==8.0.0
|
||||
/databricks/python/bin/pip install psutil
|
||||
/databricks/python/bin/pip install tqdm
|
||||
/databricks/python/bin/pip install torch==1.11.0+cpu torchvision==0.12.0+cpu tensorboard -f https://download.pytorch.org/whl/torch_stable.html
|
||||
|
||||
# copy bigdl jars to databricks
|
||||
cp /databricks/python/lib/python3.8/site-packages/bigdl/share/*/lib/*.jar /databricks/jars
|
||||
|
|
@ -103,132 +103,12 @@ Output on Databricks:
|
|||
|
||||

|
||||
|
||||
**Run ncf_train example on Databricks**
|
||||
**Run Examples**
|
||||
|
||||
Create a notebook and run the following example. Note that to make things simple, we are just generating some dummy data for this example.
|
||||
- [Keras example on Databricks](https://github.com/intel-analytics/BigDL/blob/main/python/orca/tutorial/databricks/tf_keras_ncf.ipynb)
|
||||
- [Pytorch example on Databricks](https://github.com/intel-analytics/BigDL/blob/main/python/orca/tutorial/databricks/pytorch_fashion_mnist.ipynb)
|
||||
|
||||
```python
|
||||
import math
|
||||
import argparse
|
||||
import os
|
||||
import random
|
||||
|
||||
from bigdl.orca import init_orca_context, stop_orca_context, OrcaContext
|
||||
from bigdl.orca.learn.tf2.estimator import Estimator
|
||||
from pyspark.sql.types import StructType, StructField, IntegerType
|
||||
|
||||
|
||||
def build_model(num_users, num_items, class_num, layers=[20, 10], include_mf=True, mf_embed=20):
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras.layers import Input, Embedding, Dense, Flatten, concatenate, multiply
|
||||
|
||||
num_layer = len(layers)
|
||||
user_input = Input(shape=(1,), dtype='int32', name='user_input')
|
||||
item_input = Input(shape=(1,), dtype='int32', name='item_input')
|
||||
|
||||
mlp_embed_user = Embedding(input_dim=num_users, output_dim=int(layers[0] / 2),
|
||||
input_length=1)(user_input)
|
||||
mlp_embed_item = Embedding(input_dim=num_items, output_dim=int(layers[0] / 2),
|
||||
input_length=1)(item_input)
|
||||
|
||||
user_latent = Flatten()(mlp_embed_user)
|
||||
item_latent = Flatten()(mlp_embed_item)
|
||||
|
||||
mlp_latent = concatenate([user_latent, item_latent], axis=1)
|
||||
for idx in range(1, num_layer):
|
||||
layer = Dense(layers[idx], activation='relu',
|
||||
name='layer%d' % idx)
|
||||
mlp_latent = layer(mlp_latent)
|
||||
|
||||
if include_mf:
|
||||
mf_embed_user = Embedding(input_dim=num_users,
|
||||
output_dim=mf_embed,
|
||||
input_length=1)(user_input)
|
||||
mf_embed_item = Embedding(input_dim=num_users,
|
||||
output_dim=mf_embed,
|
||||
input_length=1)(item_input)
|
||||
mf_user_flatten = Flatten()(mf_embed_user)
|
||||
mf_item_flatten = Flatten()(mf_embed_item)
|
||||
|
||||
mf_latent = multiply([mf_user_flatten, mf_item_flatten])
|
||||
concated_model = concatenate([mlp_latent, mf_latent], axis=1)
|
||||
prediction = Dense(class_num, activation='softmax', name='prediction')(concated_model)
|
||||
else:
|
||||
prediction = Dense(class_num, activation='softmax', name='prediction')(mlp_latent)
|
||||
|
||||
model = tf.keras.Model([user_input, item_input], prediction)
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
executor_cores = 2
|
||||
lr = 0.001
|
||||
epochs = 5
|
||||
batch_size = 8000
|
||||
model_dir = "/dbfs/FileStore/model/ncf/"
|
||||
backend = "ray" # ray or spark
|
||||
data_dir = './'
|
||||
save_path = model_dir + "ncf.h5"
|
||||
|
||||
sc = init_orca_context(cluster_mode="spark-submit")
|
||||
|
||||
spark = OrcaContext.get_spark_session()
|
||||
|
||||
num_users, num_items = 6000, 3000
|
||||
rdd = sc.range(0, 50000).map(
|
||||
lambda x: [random.randint(0, num_users - 1), random.randint(0, num_items - 1), random.randint(0, 4)])
|
||||
schema = StructType([StructField("user", IntegerType(), False),
|
||||
StructField("item", IntegerType(), False),
|
||||
StructField("label", IntegerType(), False)])
|
||||
data = spark.createDataFrame(rdd, schema)
|
||||
train, test = data.randomSplit([0.8, 0.2], seed=1)
|
||||
|
||||
config = {"lr": lr, "inter_op_parallelism": 4, "intra_op_parallelism": executor_cores}
|
||||
|
||||
|
||||
def model_creator(config):
|
||||
import tensorflow as tf
|
||||
|
||||
model = build_model(num_users, num_items, 5)
|
||||
print(model.summary())
|
||||
optimizer = tf.keras.optimizers.Adam(config["lr"])
|
||||
model.compile(optimizer=optimizer,
|
||||
loss='sparse_categorical_crossentropy',
|
||||
metrics=['sparse_categorical_crossentropy', 'accuracy'])
|
||||
return model
|
||||
|
||||
|
||||
steps_per_epoch = math.ceil(train.count() / batch_size)
|
||||
val_steps = math.ceil(test.count() / batch_size)
|
||||
|
||||
estimator = Estimator.from_keras(model_creator=model_creator,
|
||||
verbose=False,
|
||||
config=config,
|
||||
backend=backend,
|
||||
model_dir=model_dir)
|
||||
estimator.fit(train,
|
||||
batch_size=batch_size,
|
||||
epochs=epochs,
|
||||
feature_cols=['user', 'item'],
|
||||
label_cols=['label'],
|
||||
steps_per_epoch=steps_per_epoch,
|
||||
validation_data=test,
|
||||
validation_steps=val_steps)
|
||||
|
||||
predictions = estimator.predict(test,
|
||||
batch_size=batch_size,
|
||||
feature_cols=['user', 'item'],
|
||||
steps=val_steps)
|
||||
print("Predictions on validation dataset:")
|
||||
predictions.show(5, truncate=False)
|
||||
|
||||
print("Saving model to: ", save_path)
|
||||
estimator.save(save_path)
|
||||
|
||||
# load with estimator.load(save_path)
|
||||
|
||||
stop_orca_context()
|
||||
```
|
||||
> Note that if you want to save model to DBFS, or load model from DBFS, the save/load path should be the **File API Format** on Databricks, which means your save/load path should start with `/dbfs`.
|
||||
|
||||
### **6. Other ways to install third-party libraries on Databricks if necessary**
|
||||
|
||||
|
|
|
|||
Loading…
Reference in a new issue