Orca: Document polishing (#6382)

* fix: delete redundant quick examples.

* feat: add How-to Guides with use cases.

* fix: _toc.yml

* fix: fix typo.

* fix: fix typo and file location.

* fix: add quickstarts to _toc.yml
This commit is contained in:
Cengguang Zhang 2022-11-04 15:02:37 +08:00 committed by GitHub
parent 29e9c18c70
commit 916fdecd27
6 changed files with 23 additions and 9 deletions

View file

@ -39,15 +39,22 @@ subtrees:
- file: doc/Orca/Overview/distributed-tuning
- file: doc/Orca/Overview/ray
- file: doc/Orca/QuickStart/index
title: "Quick Examples"
title: "Quickstarts"
subtrees:
- entries:
- file: doc/UseCase/spark-dataframe
- file: doc/UseCase/xshards-pandas
- file: doc/Orca/QuickStart/ray-quickstart
- file: doc/Orca/QuickStart/orca-pytorch-distributed-quickstart
- file: doc/Orca/QuickStart/orca-autoestimator-pytorch-quickstart
- file: doc/Orca/QuickStart/orca-autoxgboost-quickstart
- file: doc/Orca/Quickstart/orca-tf-quickstart
- file: doc/Orca/Quickstart/orca-tf2keras-quickstart
- file: doc/Orca/Quickstart/orca-keras-quickstart
- file: doc/Orca/Quickstart/orca-pytorch-quickstart
- file: doc/Orca/Quickstart/ray-quickstart
- file: doc/Orca/Howto/index
title: "How-to Guides"
subtrees:
- entries:
- file: doc/Orca/Howto/spark-dataframe
- file: doc/Orca/Howto/xshards-pandas
- file: doc/Orca/Howto/orca-autoestimator-pytorch-quickstart
- file: doc/Orca/Howto/orca-autoxgboost-quickstart
- file: doc/Orca/Tutorial/index
title: "Tutorials"
subtrees:

View file

@ -0,0 +1,7 @@
Orca How-to Guides
=========================
* `Use Spark DataFrames for Deep Learning <spark-dataframe.html>`__
* `Use Distributed Pandas for Deep Learning <xshards-pandas.html>`__
* `Enable AutoML for PyTorch <orca-autoestimator-pytorch-quickstart.html>`__
* `Use AutoXGBoost to auto-tune XGBoost parameters <orca-autoxgboost-quickstart.html>`__

View file

@ -6,7 +6,7 @@
---
**In this guide we will describe how to use Apache Spark Dataframes to scale-out data processing for distribtued deep learning.**
**In this guide we will describe how to use Apache Spark Dataframes to scale-out data processing for distributed deep learning.**
The dataset used in this guide is [movielens-1M](https://grouplens.org/datasets/movielens/1m/), which contains 1 million ratings of 5 levels from 6000 users on 4000 movies. We will read the data into Spark Dataframe and directly use the Spark Dataframe as the input to the distributed training.

View file

@ -6,7 +6,7 @@
---
**In this guide we will describe how to use [XShards](../Orca/Overview/data-parallel-processing.md) to scale-out Pandas data processing for distribtued deep learning.**
**In this guide we will describe how to use [XShards](../Orca/Overview/data-parallel-processing.md) to scale-out Pandas data processing for distributed deep learning.**
### 1. Read input data into XShards of Pandas DataFrame