[remove pipeline examples (#12626)
This commit is contained in:
		
							parent
							
								
									5f04ed7254
								
							
						
					
					
						commit
						90f6709486
					
				
					 7 changed files with 1 additions and 708 deletions
				
			
		| 
						 | 
				
			
			@ -1,99 +0,0 @@
 | 
			
		|||
# Run HuggingFace `transformers` Models with Pipeline Optimization on Intel NPU
 | 
			
		||||
 | 
			
		||||
In this directory, you will find examples on how to directly run HuggingFace `transformers` models with pipeline optimization on Intel NPUs. See the table blow for verified models.
 | 
			
		||||
 | 
			
		||||
## Verified Models
 | 
			
		||||
 | 
			
		||||
| Model      | Model Link                                                    |
 | 
			
		||||
|------------|----------------------------------------------------------------|
 | 
			
		||||
| Llama2 | [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
 | 
			
		||||
| Llama3 | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
 | 
			
		||||
| Llama3.2 | [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct), [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) |
 | 
			
		||||
| Qwen2 | [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) |
 | 
			
		||||
| Qwen2.5 | [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct), [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) |
 | 
			
		||||
| Baichuan2 | [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) |
 | 
			
		||||
| MiniCPM | [openbmb/MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16), [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) |
 | 
			
		||||
 | 
			
		||||
## 0. Prerequisites
 | 
			
		||||
For `ipex-llm` NPU support, please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#install-prerequisites) for details about the required preparations.
 | 
			
		||||
 | 
			
		||||
## 1. Install & Runtime Configurations
 | 
			
		||||
### 1.1 Installation on Windows
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```cmd
 | 
			
		||||
conda create -n llm python=3.11
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
:: install ipex-llm with 'npu' option
 | 
			
		||||
pip install --pre --upgrade ipex-llm[npu]
 | 
			
		||||
 | 
			
		||||
:: [optional] for Llama-3.2-1B-Instruct & Llama-3.2-3B-Instruct
 | 
			
		||||
pip install transformers==4.45.0 accelerate==0.33.0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#install-ipex-llm-with-npu-support) for more details about `ipex-llm` installation on Intel NPU.
 | 
			
		||||
 | 
			
		||||
### 1.2 Runtime Configurations
 | 
			
		||||
Please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#runtime-configurations) for environment variables setting based on your device.
 | 
			
		||||
 | 
			
		||||
## 2. Run Optimized Models
 | 
			
		||||
The examples below show how to run the **_optimized HuggingFace model implementations_** on Intel NPU:
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
:: to run Llama-2-7b-chat-hf
 | 
			
		||||
python llama2.py --repo-id-or-model-path "meta-llama/Llama-2-7b-chat-hf" --save-directory <converted_model_path>
 | 
			
		||||
 | 
			
		||||
:: to run Meta-Llama-3-8B-Instruct
 | 
			
		||||
python llama3.py --repo-id-or-model-path "meta-llama/Meta-Llama-3-8B-Instruct" --save-directory <converted_model_path>
 | 
			
		||||
 | 
			
		||||
:: to run Llama-3.2-1B-Instruct
 | 
			
		||||
python llama3.py --repo-id-or-model-path "meta-llama/Llama-3.2-1B-Instruct" --save-directory <converted_model_path>
 | 
			
		||||
 | 
			
		||||
:: to run Llama-3.2-3B-Instruct
 | 
			
		||||
python llama3.py --repo-id-or-model-path "meta-llama/Llama-3.2-3B-Instruct" --save-directory <converted_model_path>
 | 
			
		||||
 | 
			
		||||
:: to run Qwen2.5-7B-Instruct
 | 
			
		||||
python qwen.py --repo-id-or-model-path "Qwen/Qwen2.5-7B-Instruct" --save-directory <converted_model_path>
 | 
			
		||||
 | 
			
		||||
:: to run Qwen2-1.5B-Instruct
 | 
			
		||||
python qwen.py --repo-id-or-model-path "Qwen/Qwen2-1.5B-Instruct" --low-bit sym_int8 --save-directory <converted_model_path>
 | 
			
		||||
 | 
			
		||||
:: to run Qwen2.5-3B-Instruct
 | 
			
		||||
python qwen.py --repo-id-or-model-path "Qwen/Qwen2.5-3B-Instruct" --low-bit sym_int8 --save-directory <converted_model_path>
 | 
			
		||||
 | 
			
		||||
:: to run Baichuan2-7B-Chat
 | 
			
		||||
python baichuan2.py --repo-id-or-model-path "baichuan-inc/Baichuan2-7B-Chat" --save-directory <converted_model_path>
 | 
			
		||||
 | 
			
		||||
:: to run MiniCPM-1B-sft-bf16
 | 
			
		||||
python minicpm.py --repo-id-or-model-path "openbmb/MiniCPM-1B-sft-bf16" --save-directory <converted_model_path>
 | 
			
		||||
 | 
			
		||||
:: to run MiniCPM-2B-sft-bf16
 | 
			
		||||
python minicpm.py --repo-id-or-model-path "openbmb/MiniCPM-2B-sft-bf16" --save-directory <converted_model_path>
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the model (e.g. `meta-llama/Llama-2-7b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `What is AI?`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
- `--max-context-len MAX_CONTEXT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
 | 
			
		||||
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`.
 | 
			
		||||
- `--disable-transpose-value-cache`: Disable the optimization of transposing value cache.
 | 
			
		||||
- `--disable-streaming`: Disable streaming mode of generation.
 | 
			
		||||
- `--save-directory SAVE_DIRECTORY`: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, otherwise the lowbit model in `SAVE_DIRECTORY` will be loaded.
 | 
			
		||||
 | 
			
		||||
### Sample Output of Streaming Mode
 | 
			
		||||
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
 | 
			
		||||
 
 | 
			
		||||
```log
 | 
			
		||||
-------------------- Input --------------------
 | 
			
		||||
input length: 28
 | 
			
		||||
<s>[INST] <<SYS>>
 | 
			
		||||
 | 
			
		||||
<</SYS>>
 | 
			
		||||
 | 
			
		||||
What is AI? [/INST]
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
 AI (Artificial Intelligence) is a field of computer science and technology that focuses on the development of intelligent machines that can perform
 | 
			
		||||
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -1,120 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer, TextStreamer
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    parser = argparse.ArgumentParser(
 | 
			
		||||
        description="Predict Tokens using `generate()` API for npu model"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--repo-id-or-model-path",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="baichuan-inc/Baichuan2-7B-Chat",
 | 
			
		||||
        help="The huggingface repo id for the Baichuan2 model to be downloaded"
 | 
			
		||||
        ", or the path to the huggingface checkpoint folder",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
			
		||||
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
			
		||||
    parser.add_argument("--quantization_group_size", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--save-directory", type=str,
 | 
			
		||||
        required=True,
 | 
			
		||||
        help="The path of folder to save converted model, "
 | 
			
		||||
             "If path not exists, lowbit model will be saved there. "
 | 
			
		||||
             "Else, lowbit model will be loaded.",
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    if not os.path.exists(args.save_directory):
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                     optimize_model=True,
 | 
			
		||||
                                                     pipeline=True,
 | 
			
		||||
                                                     max_context_len=args.max_context_len,
 | 
			
		||||
                                                     max_prompt_len=args.max_prompt_len,
 | 
			
		||||
                                                     quantization_group_size=args.quantization_group_size,
 | 
			
		||||
                                                     torch_dtype=torch.float16,
 | 
			
		||||
                                                     attn_implementation="eager",
 | 
			
		||||
                                                     transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
                                                     trust_remote_code=True,
 | 
			
		||||
                                                     save_directory=args.save_directory)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        tokenizer.save_pretrained(args.save_directory)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.load_low_bit(
 | 
			
		||||
            args.save_directory,
 | 
			
		||||
            attn_implementation="eager",
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            max_context_len=args.max_context_len,
 | 
			
		||||
            max_prompt_len=args.max_prompt_len,
 | 
			
		||||
            pipeline=True,
 | 
			
		||||
            transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
            trust_remote_code=True
 | 
			
		||||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)        
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    if args.disable_streaming:
 | 
			
		||||
        streamer = None
 | 
			
		||||
    else:
 | 
			
		||||
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
			
		||||
 | 
			
		||||
    DEFAULT_SYSTEM_PROMPT = """\
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        print("finish to load")
 | 
			
		||||
        for i in range(3):
 | 
			
		||||
            messages = [{"role": "system", "content": "You are a helpful assistant."},
 | 
			
		||||
                        {"role": "user", "content": args.prompt}]
 | 
			
		||||
            text = tokenizer.apply_chat_template(messages,
 | 
			
		||||
                                                 tokenize=False,
 | 
			
		||||
                                                 add_generation_prompt=True)
 | 
			
		||||
            _input_ids = tokenizer([text], return_tensors="pt").input_ids
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            print(args.prompt)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, max_new_tokens=args.n_predict, streamer=streamer
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            if args.disable_streaming:
 | 
			
		||||
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
                print(output_str)
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    print("success shut down")
 | 
			
		||||
| 
						 | 
				
			
			@ -1,127 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer, TextStreamer
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
def get_prompt(message: str, chat_history: list[tuple[str, str]],
 | 
			
		||||
               system_prompt: str) -> str:
 | 
			
		||||
    texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
 | 
			
		||||
    # The first user input is _not_ stripped
 | 
			
		||||
    do_strip = False
 | 
			
		||||
    for user_input, response in chat_history:
 | 
			
		||||
        user_input = user_input.strip() if do_strip else user_input
 | 
			
		||||
        do_strip = True
 | 
			
		||||
        texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
 | 
			
		||||
    message = message.strip() if do_strip else message
 | 
			
		||||
    texts.append(f'{message} [/INST]')
 | 
			
		||||
    return ''.join(texts)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    parser = argparse.ArgumentParser(
 | 
			
		||||
        description="Predict Tokens using `generate()` API for npu model"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--repo-id-or-model-path",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="meta-llama/Llama-2-7b-chat-hf",
 | 
			
		||||
        help="The huggingface repo id for the Llama2 model to be downloaded"
 | 
			
		||||
        ", or the path to the huggingface checkpoint folder",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
			
		||||
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
			
		||||
    parser.add_argument("--quantization_group_size", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--save-directory", type=str,
 | 
			
		||||
        required=True,
 | 
			
		||||
        help="The path of folder to save converted model, "
 | 
			
		||||
             "If path not exists, lowbit model will be saved there. "
 | 
			
		||||
             "Else, lowbit model will be loaded.",
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    if not os.path.exists(args.save_directory):
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                     optimize_model=True,
 | 
			
		||||
                                                     pipeline=True,
 | 
			
		||||
                                                     max_context_len=args.max_context_len,
 | 
			
		||||
                                                     max_prompt_len=args.max_prompt_len,
 | 
			
		||||
                                                     quantization_group_size=args.quantization_group_size,
 | 
			
		||||
                                                     torch_dtype=torch.float16,
 | 
			
		||||
                                                     attn_implementation="eager",
 | 
			
		||||
                                                     transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
                                                     save_directory=args.save_directory)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        tokenizer.save_pretrained(args.save_directory)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.load_low_bit(
 | 
			
		||||
            args.save_directory,
 | 
			
		||||
            attn_implementation="eager",
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            max_context_len=args.max_context_len,
 | 
			
		||||
            max_prompt_len=args.max_prompt_len,
 | 
			
		||||
            pipeline=True,
 | 
			
		||||
            transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)        
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    if args.disable_streaming:
 | 
			
		||||
        streamer = None
 | 
			
		||||
    else:
 | 
			
		||||
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
			
		||||
 | 
			
		||||
    DEFAULT_SYSTEM_PROMPT = """\
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        print("finish to load")
 | 
			
		||||
        for i in range(3):
 | 
			
		||||
            prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
 | 
			
		||||
            _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            print(prompt)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, max_new_tokens=args.n_predict, streamer=streamer
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            if args.disable_streaming:
 | 
			
		||||
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
                print(output_str)
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    print("success shut down")
 | 
			
		||||
| 
						 | 
				
			
			@ -1,130 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer, TextStreamer
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
# you could tune the prompt based on your own model,
 | 
			
		||||
# here the prompt tuning refers to https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3
 | 
			
		||||
DEFAULT_SYSTEM_PROMPT = """\
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
def get_prompt(user_input: str, chat_history: list[tuple[str, str]],
 | 
			
		||||
               system_prompt: str) -> str:
 | 
			
		||||
    prompt_texts = [f'<|begin_of_text|>']
 | 
			
		||||
 | 
			
		||||
    if system_prompt != '':
 | 
			
		||||
        prompt_texts.append(f'<|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|>')
 | 
			
		||||
 | 
			
		||||
    for history_input, history_response in chat_history:
 | 
			
		||||
        prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n\n{history_input.strip()}<|eot_id|>')
 | 
			
		||||
        prompt_texts.append(f'<|start_header_id|>assistant<|end_header_id|>\n\n{history_response.strip()}<|eot_id|>')
 | 
			
		||||
 | 
			
		||||
    prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n\n{user_input.strip()}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n')
 | 
			
		||||
    return ''.join(prompt_texts)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    parser = argparse.ArgumentParser(
 | 
			
		||||
        description="Predict Tokens using `generate()` API for npu model"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--repo-id-or-model-path",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="meta-llama/Meta-Llama-3-8B-Instruct",
 | 
			
		||||
        help="The huggingface repo id for the Llama3 model to be downloaded"
 | 
			
		||||
        ", or the path to the huggingface checkpoint folder",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
			
		||||
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
			
		||||
    parser.add_argument("--quantization_group_size", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--save-directory", type=str,
 | 
			
		||||
        required=True,
 | 
			
		||||
        help="The path of folder to save converted model, "
 | 
			
		||||
             "If path not exists, lowbit model will be saved there. "
 | 
			
		||||
             "Else, lowbit model will be loaded.",
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    if not os.path.exists(args.save_directory):
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                    torch_dtype=torch.float16,
 | 
			
		||||
                                                    optimize_model=True,
 | 
			
		||||
                                                    pipeline=True,
 | 
			
		||||
                                                    max_context_len=args.max_context_len,
 | 
			
		||||
                                                    max_prompt_len=args.max_prompt_len,
 | 
			
		||||
                                                    quantization_group_size=args.quantization_group_size,
 | 
			
		||||
                                                    attn_implementation="eager",
 | 
			
		||||
                                                    transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
                                                    save_directory=args.save_directory)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        tokenizer.save_pretrained(args.save_directory)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.load_low_bit(
 | 
			
		||||
            args.save_directory,
 | 
			
		||||
            attn_implementation="eager",
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            max_context_len=args.max_context_len,
 | 
			
		||||
            max_prompt_len=args.max_prompt_len,
 | 
			
		||||
            pipeline=True,
 | 
			
		||||
            transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)        
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    if args.disable_streaming:
 | 
			
		||||
        streamer = None
 | 
			
		||||
    else:
 | 
			
		||||
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        print("finish to load")
 | 
			
		||||
        for i in range(3):
 | 
			
		||||
            prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
 | 
			
		||||
            _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            print(prompt)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, max_new_tokens=args.n_predict, streamer=streamer
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            if args.disable_streaming:
 | 
			
		||||
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
                print(output_str)
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    print("success shut down")
 | 
			
		||||
| 
						 | 
				
			
			@ -1,113 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer, TextStreamer
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    parser = argparse.ArgumentParser(
 | 
			
		||||
        description="Predict Tokens using `generate()` API for npu model"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--repo-id-or-model-path",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="openbmb/MiniCPM-1B-sft-bf16", # or "openbmb/MiniCPM-2B-sft-bf16"
 | 
			
		||||
        help="The huggingface repo id for the MiniCPM model to be downloaded"
 | 
			
		||||
        ", or the path to the huggingface checkpoint folder",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
			
		||||
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
			
		||||
    parser.add_argument("--quantization_group_size", type=int, default=0)
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--save-directory", type=str,
 | 
			
		||||
        required=True,
 | 
			
		||||
        help="The path of folder to save converted model, "
 | 
			
		||||
             "If path not exists, lowbit model will be saved there. "
 | 
			
		||||
             "Else, lowbit model will be loaded.",
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    if not os.path.exists(args.save_directory):
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                     optimize_model=True,
 | 
			
		||||
                                                     pipeline=True,
 | 
			
		||||
                                                     max_context_len=args.max_context_len,
 | 
			
		||||
                                                     max_prompt_len=args.max_prompt_len,
 | 
			
		||||
                                                     torch_dtype=torch.float16,
 | 
			
		||||
                                                     attn_implementation="eager",
 | 
			
		||||
                                                     quantization_group_size=args.quantization_group_size,
 | 
			
		||||
                                                     transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
                                                     trust_remote_code=True,
 | 
			
		||||
                                                     save_directory=args.save_directory)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        tokenizer.save_pretrained(args.save_directory)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.load_low_bit(
 | 
			
		||||
            args.save_directory,
 | 
			
		||||
            attn_implementation="eager",
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            max_context_len=args.max_context_len,
 | 
			
		||||
            max_prompt_len=args.max_prompt_len,
 | 
			
		||||
            pipeline=True,
 | 
			
		||||
            transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
            trust_remote_code=True
 | 
			
		||||
        )
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)        
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    if args.disable_streaming:
 | 
			
		||||
        streamer = None
 | 
			
		||||
    else:
 | 
			
		||||
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        print("finish to load")
 | 
			
		||||
        for i in range(3):
 | 
			
		||||
            prompt = "<用户>{}<AI>".format(args.prompt)
 | 
			
		||||
            _input_ids = tokenizer.encode(prompt, return_tensors="pt")
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            print(prompt)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, max_new_tokens=args.n_predict, streamer=streamer
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            if args.disable_streaming:
 | 
			
		||||
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
                print(output_str)
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    print("success shut down")
 | 
			
		||||
| 
						 | 
				
			
			@ -1,118 +0,0 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import torch
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer, TextStreamer
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    parser = argparse.ArgumentParser(
 | 
			
		||||
        description="Predict Tokens using `generate()` API for npu model"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--repo-id-or-model-path",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="Qwen/Qwen2.5-7B-Instruct",  # Or Qwen2-7B-Instruct, Qwen2-1.5B-Instruct
 | 
			
		||||
        help="The huggingface repo id for the Qwen model to be downloaded"
 | 
			
		||||
        ", or the path to the huggingface checkpoint folder",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="AI是什么?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
 | 
			
		||||
    parser.add_argument("--max-context-len", type=int, default=1024)
 | 
			
		||||
    parser.add_argument("--max-prompt-len", type=int, default=512)
 | 
			
		||||
    parser.add_argument("--quantization_group_size", type=int, default=0)
 | 
			
		||||
    parser.add_argument('--low-bit', type=str, default="sym_int4",
 | 
			
		||||
                        help='Low bit precision to quantize the model')
 | 
			
		||||
    parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--disable-streaming", action="store_true", default=False)
 | 
			
		||||
    parser.add_argument("--save-directory", type=str,
 | 
			
		||||
        required=True,
 | 
			
		||||
        help="The path of folder to save converted model, "
 | 
			
		||||
             "If path not exists, lowbit model will be saved there. "
 | 
			
		||||
             "Else, lowbit model will be loaded.",
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
 | 
			
		||||
    if not os.path.exists(args.save_directory):
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                     optimize_model=True,
 | 
			
		||||
                                                     pipeline=True,
 | 
			
		||||
                                                     load_in_low_bit=args.low_bit,
 | 
			
		||||
                                                     max_context_len=args.max_context_len,
 | 
			
		||||
                                                     max_prompt_len=args.max_prompt_len,
 | 
			
		||||
                                                     quantization_group_size=args.quantization_group_size,
 | 
			
		||||
                                                     torch_dtype=torch.float16,
 | 
			
		||||
                                                     attn_implementation="eager",
 | 
			
		||||
                                                     transpose_value_cache=not args.disable_transpose_value_cache,
 | 
			
		||||
                                                     trust_remote_code=True,
 | 
			
		||||
                                                     save_directory=args.save_directory)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        tokenizer.save_pretrained(args.save_directory)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.load_low_bit(
 | 
			
		||||
            args.save_directory,
 | 
			
		||||
            attn_implementation="eager",
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            max_context_len=args.max_context_len,
 | 
			
		||||
            max_prompt_len=args.max_prompt_len,
 | 
			
		||||
            pipeline=True,
 | 
			
		||||
            transpose_value_cache=not args.disable_transpose_value_cache)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)        
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    if args.disable_streaming:
 | 
			
		||||
        streamer = None
 | 
			
		||||
    else:
 | 
			
		||||
        streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    messages = [{"role": "system", "content": "You are a helpful assistant."},
 | 
			
		||||
                {"role": "user", "content": args.prompt}]
 | 
			
		||||
    text = tokenizer.apply_chat_template(messages,
 | 
			
		||||
                                         tokenize=False,
 | 
			
		||||
                                         add_generation_prompt=True)
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        print("finish to load")
 | 
			
		||||
        for i in range(3):
 | 
			
		||||
            _input_ids = tokenizer([text], return_tensors="pt").input_ids
 | 
			
		||||
            print("-" * 20, "Input", "-" * 20)
 | 
			
		||||
            print("input length:", len(_input_ids[0]))
 | 
			
		||||
            print(text)
 | 
			
		||||
            print("-" * 20, "Output", "-" * 20)
 | 
			
		||||
            st = time.time()
 | 
			
		||||
            output = model.generate(
 | 
			
		||||
                _input_ids, max_new_tokens=args.n_predict, streamer=streamer
 | 
			
		||||
            )
 | 
			
		||||
            end = time.time()
 | 
			
		||||
            if args.disable_streaming:
 | 
			
		||||
                output_str = tokenizer.decode(output[0], skip_special_tokens=False)
 | 
			
		||||
                print(output_str)
 | 
			
		||||
            print(f"Inference time: {end-st} s")
 | 
			
		||||
 | 
			
		||||
    print("-" * 80)
 | 
			
		||||
    print("done")
 | 
			
		||||
    print("success shut down")
 | 
			
		||||
| 
						 | 
				
			
			@ -48,7 +48,7 @@ Please refer to [Quick Start](../../../../../../docs/mddocs/Quickstart/npu_quick
 | 
			
		|||
### 1.2 Runtime Configurations
 | 
			
		||||
Please refer to [Quick Start](../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#runtime-configurations) for environment variables setting based on your device.
 | 
			
		||||
 | 
			
		||||
## 2. Run Optimized Models (Experimental)
 | 
			
		||||
## 2. Run Optimized Models
 | 
			
		||||
The examples below show how to run the **_optimized HuggingFace model implementations_** on Intel NPU, including
 | 
			
		||||
- [Llama2-7B](./llama2.py)
 | 
			
		||||
- [Llama3-8B](./llama3.py)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue