[remove pipeline examples (#12626)
This commit is contained in:
parent
5f04ed7254
commit
90f6709486
7 changed files with 1 additions and 708 deletions
|
|
@ -1,99 +0,0 @@
|
||||||
# Run HuggingFace `transformers` Models with Pipeline Optimization on Intel NPU
|
|
||||||
|
|
||||||
In this directory, you will find examples on how to directly run HuggingFace `transformers` models with pipeline optimization on Intel NPUs. See the table blow for verified models.
|
|
||||||
|
|
||||||
## Verified Models
|
|
||||||
|
|
||||||
| Model | Model Link |
|
|
||||||
|------------|----------------------------------------------------------------|
|
|
||||||
| Llama2 | [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
|
|
||||||
| Llama3 | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
|
|
||||||
| Llama3.2 | [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct), [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) |
|
|
||||||
| Qwen2 | [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) |
|
|
||||||
| Qwen2.5 | [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct), [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) |
|
|
||||||
| Baichuan2 | [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) |
|
|
||||||
| MiniCPM | [openbmb/MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16), [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) |
|
|
||||||
|
|
||||||
## 0. Prerequisites
|
|
||||||
For `ipex-llm` NPU support, please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#install-prerequisites) for details about the required preparations.
|
|
||||||
|
|
||||||
## 1. Install & Runtime Configurations
|
|
||||||
### 1.1 Installation on Windows
|
|
||||||
We suggest using conda to manage environment:
|
|
||||||
```cmd
|
|
||||||
conda create -n llm python=3.11
|
|
||||||
conda activate llm
|
|
||||||
|
|
||||||
:: install ipex-llm with 'npu' option
|
|
||||||
pip install --pre --upgrade ipex-llm[npu]
|
|
||||||
|
|
||||||
:: [optional] for Llama-3.2-1B-Instruct & Llama-3.2-3B-Instruct
|
|
||||||
pip install transformers==4.45.0 accelerate==0.33.0
|
|
||||||
```
|
|
||||||
|
|
||||||
Please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#install-ipex-llm-with-npu-support) for more details about `ipex-llm` installation on Intel NPU.
|
|
||||||
|
|
||||||
### 1.2 Runtime Configurations
|
|
||||||
Please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#runtime-configurations) for environment variables setting based on your device.
|
|
||||||
|
|
||||||
## 2. Run Optimized Models
|
|
||||||
The examples below show how to run the **_optimized HuggingFace model implementations_** on Intel NPU:
|
|
||||||
|
|
||||||
```cmd
|
|
||||||
:: to run Llama-2-7b-chat-hf
|
|
||||||
python llama2.py --repo-id-or-model-path "meta-llama/Llama-2-7b-chat-hf" --save-directory <converted_model_path>
|
|
||||||
|
|
||||||
:: to run Meta-Llama-3-8B-Instruct
|
|
||||||
python llama3.py --repo-id-or-model-path "meta-llama/Meta-Llama-3-8B-Instruct" --save-directory <converted_model_path>
|
|
||||||
|
|
||||||
:: to run Llama-3.2-1B-Instruct
|
|
||||||
python llama3.py --repo-id-or-model-path "meta-llama/Llama-3.2-1B-Instruct" --save-directory <converted_model_path>
|
|
||||||
|
|
||||||
:: to run Llama-3.2-3B-Instruct
|
|
||||||
python llama3.py --repo-id-or-model-path "meta-llama/Llama-3.2-3B-Instruct" --save-directory <converted_model_path>
|
|
||||||
|
|
||||||
:: to run Qwen2.5-7B-Instruct
|
|
||||||
python qwen.py --repo-id-or-model-path "Qwen/Qwen2.5-7B-Instruct" --save-directory <converted_model_path>
|
|
||||||
|
|
||||||
:: to run Qwen2-1.5B-Instruct
|
|
||||||
python qwen.py --repo-id-or-model-path "Qwen/Qwen2-1.5B-Instruct" --low-bit sym_int8 --save-directory <converted_model_path>
|
|
||||||
|
|
||||||
:: to run Qwen2.5-3B-Instruct
|
|
||||||
python qwen.py --repo-id-or-model-path "Qwen/Qwen2.5-3B-Instruct" --low-bit sym_int8 --save-directory <converted_model_path>
|
|
||||||
|
|
||||||
:: to run Baichuan2-7B-Chat
|
|
||||||
python baichuan2.py --repo-id-or-model-path "baichuan-inc/Baichuan2-7B-Chat" --save-directory <converted_model_path>
|
|
||||||
|
|
||||||
:: to run MiniCPM-1B-sft-bf16
|
|
||||||
python minicpm.py --repo-id-or-model-path "openbmb/MiniCPM-1B-sft-bf16" --save-directory <converted_model_path>
|
|
||||||
|
|
||||||
:: to run MiniCPM-2B-sft-bf16
|
|
||||||
python minicpm.py --repo-id-or-model-path "openbmb/MiniCPM-2B-sft-bf16" --save-directory <converted_model_path>
|
|
||||||
```
|
|
||||||
|
|
||||||
Arguments info:
|
|
||||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the model (e.g. `meta-llama/Llama-2-7b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder.
|
|
||||||
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `What is AI?`.
|
|
||||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
|
||||||
- `--max-context-len MAX_CONTEXT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
|
|
||||||
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`.
|
|
||||||
- `--disable-transpose-value-cache`: Disable the optimization of transposing value cache.
|
|
||||||
- `--disable-streaming`: Disable streaming mode of generation.
|
|
||||||
- `--save-directory SAVE_DIRECTORY`: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, otherwise the lowbit model in `SAVE_DIRECTORY` will be loaded.
|
|
||||||
|
|
||||||
### Sample Output of Streaming Mode
|
|
||||||
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
|
|
||||||
|
|
||||||
```log
|
|
||||||
-------------------- Input --------------------
|
|
||||||
input length: 28
|
|
||||||
<s>[INST] <<SYS>>
|
|
||||||
|
|
||||||
<</SYS>>
|
|
||||||
|
|
||||||
What is AI? [/INST]
|
|
||||||
-------------------- Output --------------------
|
|
||||||
AI (Artificial Intelligence) is a field of computer science and technology that focuses on the development of intelligent machines that can perform
|
|
||||||
|
|
||||||
Inference time: xxxx s
|
|
||||||
```
|
|
||||||
|
|
@ -1,120 +0,0 @@
|
||||||
#
|
|
||||||
# Copyright 2016 The BigDL Authors.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
|
|
||||||
import os
|
|
||||||
import torch
|
|
||||||
import time
|
|
||||||
import argparse
|
|
||||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
|
||||||
from transformers import AutoTokenizer, TextStreamer
|
|
||||||
from transformers.utils import logging
|
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description="Predict Tokens using `generate()` API for npu model"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--repo-id-or-model-path",
|
|
||||||
type=str,
|
|
||||||
default="baichuan-inc/Baichuan2-7B-Chat",
|
|
||||||
help="The huggingface repo id for the Baichuan2 model to be downloaded"
|
|
||||||
", or the path to the huggingface checkpoint folder",
|
|
||||||
)
|
|
||||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
|
||||||
help='Prompt to infer')
|
|
||||||
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
|
||||||
parser.add_argument("--max-context-len", type=int, default=1024)
|
|
||||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
|
||||||
parser.add_argument("--quantization_group_size", type=int, default=0)
|
|
||||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
|
||||||
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
|
||||||
parser.add_argument("--save-directory", type=str,
|
|
||||||
required=True,
|
|
||||||
help="The path of folder to save converted model, "
|
|
||||||
"If path not exists, lowbit model will be saved there. "
|
|
||||||
"Else, lowbit model will be loaded.",
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
model_path = args.repo_id_or_model_path
|
|
||||||
|
|
||||||
if not os.path.exists(args.save_directory):
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
||||||
optimize_model=True,
|
|
||||||
pipeline=True,
|
|
||||||
max_context_len=args.max_context_len,
|
|
||||||
max_prompt_len=args.max_prompt_len,
|
|
||||||
quantization_group_size=args.quantization_group_size,
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
attn_implementation="eager",
|
|
||||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
|
||||||
trust_remote_code=True,
|
|
||||||
save_directory=args.save_directory)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
||||||
tokenizer.save_pretrained(args.save_directory)
|
|
||||||
else:
|
|
||||||
model = AutoModelForCausalLM.load_low_bit(
|
|
||||||
args.save_directory,
|
|
||||||
attn_implementation="eager",
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
max_context_len=args.max_context_len,
|
|
||||||
max_prompt_len=args.max_prompt_len,
|
|
||||||
pipeline=True,
|
|
||||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
|
||||||
trust_remote_code=True
|
|
||||||
)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
|
||||||
|
|
||||||
|
|
||||||
if args.disable_streaming:
|
|
||||||
streamer = None
|
|
||||||
else:
|
|
||||||
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
|
||||||
|
|
||||||
DEFAULT_SYSTEM_PROMPT = """\
|
|
||||||
"""
|
|
||||||
|
|
||||||
print("-" * 80)
|
|
||||||
print("done")
|
|
||||||
with torch.inference_mode():
|
|
||||||
print("finish to load")
|
|
||||||
for i in range(3):
|
|
||||||
messages = [{"role": "system", "content": "You are a helpful assistant."},
|
|
||||||
{"role": "user", "content": args.prompt}]
|
|
||||||
text = tokenizer.apply_chat_template(messages,
|
|
||||||
tokenize=False,
|
|
||||||
add_generation_prompt=True)
|
|
||||||
_input_ids = tokenizer([text], return_tensors="pt").input_ids
|
|
||||||
print("-" * 20, "Input", "-" * 20)
|
|
||||||
print("input length:", len(_input_ids[0]))
|
|
||||||
print(args.prompt)
|
|
||||||
print("-" * 20, "Output", "-" * 20)
|
|
||||||
st = time.time()
|
|
||||||
output = model.generate(
|
|
||||||
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
|
|
||||||
)
|
|
||||||
end = time.time()
|
|
||||||
if args.disable_streaming:
|
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
|
||||||
print(output_str)
|
|
||||||
print(f"Inference time: {end-st} s")
|
|
||||||
|
|
||||||
print("-" * 80)
|
|
||||||
print("done")
|
|
||||||
print("success shut down")
|
|
||||||
|
|
@ -1,127 +0,0 @@
|
||||||
#
|
|
||||||
# Copyright 2016 The BigDL Authors.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
|
|
||||||
import os
|
|
||||||
import torch
|
|
||||||
import time
|
|
||||||
import argparse
|
|
||||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
|
||||||
from transformers import AutoTokenizer, TextStreamer
|
|
||||||
from transformers.utils import logging
|
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
|
||||||
|
|
||||||
def get_prompt(message: str, chat_history: list[tuple[str, str]],
|
|
||||||
system_prompt: str) -> str:
|
|
||||||
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
|
|
||||||
# The first user input is _not_ stripped
|
|
||||||
do_strip = False
|
|
||||||
for user_input, response in chat_history:
|
|
||||||
user_input = user_input.strip() if do_strip else user_input
|
|
||||||
do_strip = True
|
|
||||||
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
|
|
||||||
message = message.strip() if do_strip else message
|
|
||||||
texts.append(f'{message} [/INST]')
|
|
||||||
return ''.join(texts)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description="Predict Tokens using `generate()` API for npu model"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--repo-id-or-model-path",
|
|
||||||
type=str,
|
|
||||||
default="meta-llama/Llama-2-7b-chat-hf",
|
|
||||||
help="The huggingface repo id for the Llama2 model to be downloaded"
|
|
||||||
", or the path to the huggingface checkpoint folder",
|
|
||||||
)
|
|
||||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
|
||||||
help='Prompt to infer')
|
|
||||||
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
|
||||||
parser.add_argument("--max-context-len", type=int, default=1024)
|
|
||||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
|
||||||
parser.add_argument("--quantization_group_size", type=int, default=0)
|
|
||||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
|
||||||
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
|
||||||
parser.add_argument("--save-directory", type=str,
|
|
||||||
required=True,
|
|
||||||
help="The path of folder to save converted model, "
|
|
||||||
"If path not exists, lowbit model will be saved there. "
|
|
||||||
"Else, lowbit model will be loaded.",
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
model_path = args.repo_id_or_model_path
|
|
||||||
|
|
||||||
if not os.path.exists(args.save_directory):
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
||||||
optimize_model=True,
|
|
||||||
pipeline=True,
|
|
||||||
max_context_len=args.max_context_len,
|
|
||||||
max_prompt_len=args.max_prompt_len,
|
|
||||||
quantization_group_size=args.quantization_group_size,
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
attn_implementation="eager",
|
|
||||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
|
||||||
save_directory=args.save_directory)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
||||||
tokenizer.save_pretrained(args.save_directory)
|
|
||||||
else:
|
|
||||||
model = AutoModelForCausalLM.load_low_bit(
|
|
||||||
args.save_directory,
|
|
||||||
attn_implementation="eager",
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
max_context_len=args.max_context_len,
|
|
||||||
max_prompt_len=args.max_prompt_len,
|
|
||||||
pipeline=True,
|
|
||||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
|
||||||
)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
|
||||||
|
|
||||||
|
|
||||||
if args.disable_streaming:
|
|
||||||
streamer = None
|
|
||||||
else:
|
|
||||||
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
|
||||||
|
|
||||||
DEFAULT_SYSTEM_PROMPT = """\
|
|
||||||
"""
|
|
||||||
|
|
||||||
print("-" * 80)
|
|
||||||
print("done")
|
|
||||||
with torch.inference_mode():
|
|
||||||
print("finish to load")
|
|
||||||
for i in range(3):
|
|
||||||
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
|
||||||
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
||||||
print("-" * 20, "Input", "-" * 20)
|
|
||||||
print("input length:", len(_input_ids[0]))
|
|
||||||
print(prompt)
|
|
||||||
print("-" * 20, "Output", "-" * 20)
|
|
||||||
st = time.time()
|
|
||||||
output = model.generate(
|
|
||||||
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
|
|
||||||
)
|
|
||||||
end = time.time()
|
|
||||||
if args.disable_streaming:
|
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
|
||||||
print(output_str)
|
|
||||||
print(f"Inference time: {end-st} s")
|
|
||||||
|
|
||||||
print("-" * 80)
|
|
||||||
print("done")
|
|
||||||
print("success shut down")
|
|
||||||
|
|
@ -1,130 +0,0 @@
|
||||||
#
|
|
||||||
# Copyright 2016 The BigDL Authors.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
|
|
||||||
import os
|
|
||||||
import torch
|
|
||||||
import time
|
|
||||||
import argparse
|
|
||||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
|
||||||
from transformers import AutoTokenizer, TextStreamer
|
|
||||||
from transformers.utils import logging
|
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
|
||||||
|
|
||||||
# you could tune the prompt based on your own model,
|
|
||||||
# here the prompt tuning refers to https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3
|
|
||||||
DEFAULT_SYSTEM_PROMPT = """\
|
|
||||||
"""
|
|
||||||
|
|
||||||
def get_prompt(user_input: str, chat_history: list[tuple[str, str]],
|
|
||||||
system_prompt: str) -> str:
|
|
||||||
prompt_texts = [f'<|begin_of_text|>']
|
|
||||||
|
|
||||||
if system_prompt != '':
|
|
||||||
prompt_texts.append(f'<|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|>')
|
|
||||||
|
|
||||||
for history_input, history_response in chat_history:
|
|
||||||
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n\n{history_input.strip()}<|eot_id|>')
|
|
||||||
prompt_texts.append(f'<|start_header_id|>assistant<|end_header_id|>\n\n{history_response.strip()}<|eot_id|>')
|
|
||||||
|
|
||||||
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n\n{user_input.strip()}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n')
|
|
||||||
return ''.join(prompt_texts)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description="Predict Tokens using `generate()` API for npu model"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--repo-id-or-model-path",
|
|
||||||
type=str,
|
|
||||||
default="meta-llama/Meta-Llama-3-8B-Instruct",
|
|
||||||
help="The huggingface repo id for the Llama3 model to be downloaded"
|
|
||||||
", or the path to the huggingface checkpoint folder",
|
|
||||||
)
|
|
||||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
|
||||||
help='Prompt to infer')
|
|
||||||
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
|
||||||
parser.add_argument("--max-context-len", type=int, default=1024)
|
|
||||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
|
||||||
parser.add_argument("--quantization_group_size", type=int, default=0)
|
|
||||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
|
||||||
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
|
||||||
parser.add_argument("--save-directory", type=str,
|
|
||||||
required=True,
|
|
||||||
help="The path of folder to save converted model, "
|
|
||||||
"If path not exists, lowbit model will be saved there. "
|
|
||||||
"Else, lowbit model will be loaded.",
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
model_path = args.repo_id_or_model_path
|
|
||||||
|
|
||||||
if not os.path.exists(args.save_directory):
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
optimize_model=True,
|
|
||||||
pipeline=True,
|
|
||||||
max_context_len=args.max_context_len,
|
|
||||||
max_prompt_len=args.max_prompt_len,
|
|
||||||
quantization_group_size=args.quantization_group_size,
|
|
||||||
attn_implementation="eager",
|
|
||||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
|
||||||
save_directory=args.save_directory)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
||||||
tokenizer.save_pretrained(args.save_directory)
|
|
||||||
else:
|
|
||||||
model = AutoModelForCausalLM.load_low_bit(
|
|
||||||
args.save_directory,
|
|
||||||
attn_implementation="eager",
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
max_context_len=args.max_context_len,
|
|
||||||
max_prompt_len=args.max_prompt_len,
|
|
||||||
pipeline=True,
|
|
||||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
|
||||||
)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
|
||||||
|
|
||||||
|
|
||||||
if args.disable_streaming:
|
|
||||||
streamer = None
|
|
||||||
else:
|
|
||||||
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
|
||||||
|
|
||||||
print("-" * 80)
|
|
||||||
print("done")
|
|
||||||
with torch.inference_mode():
|
|
||||||
print("finish to load")
|
|
||||||
for i in range(3):
|
|
||||||
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
|
||||||
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
||||||
print("-" * 20, "Input", "-" * 20)
|
|
||||||
print("input length:", len(_input_ids[0]))
|
|
||||||
print(prompt)
|
|
||||||
print("-" * 20, "Output", "-" * 20)
|
|
||||||
st = time.time()
|
|
||||||
output = model.generate(
|
|
||||||
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
|
|
||||||
)
|
|
||||||
end = time.time()
|
|
||||||
if args.disable_streaming:
|
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
|
||||||
print(output_str)
|
|
||||||
print(f"Inference time: {end-st} s")
|
|
||||||
|
|
||||||
print("-" * 80)
|
|
||||||
print("done")
|
|
||||||
print("success shut down")
|
|
||||||
|
|
@ -1,113 +0,0 @@
|
||||||
#
|
|
||||||
# Copyright 2016 The BigDL Authors.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import time
|
|
||||||
import argparse
|
|
||||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
|
||||||
from transformers import AutoTokenizer, TextStreamer
|
|
||||||
from transformers.utils import logging
|
|
||||||
import os
|
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description="Predict Tokens using `generate()` API for npu model"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--repo-id-or-model-path",
|
|
||||||
type=str,
|
|
||||||
default="openbmb/MiniCPM-1B-sft-bf16", # or "openbmb/MiniCPM-2B-sft-bf16"
|
|
||||||
help="The huggingface repo id for the MiniCPM model to be downloaded"
|
|
||||||
", or the path to the huggingface checkpoint folder",
|
|
||||||
)
|
|
||||||
parser.add_argument('--prompt', type=str, default="What is AI?",
|
|
||||||
help='Prompt to infer')
|
|
||||||
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
|
||||||
parser.add_argument("--max-context-len", type=int, default=1024)
|
|
||||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
|
||||||
parser.add_argument("--quantization_group_size", type=int, default=0)
|
|
||||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
|
||||||
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
|
||||||
parser.add_argument("--save-directory", type=str,
|
|
||||||
required=True,
|
|
||||||
help="The path of folder to save converted model, "
|
|
||||||
"If path not exists, lowbit model will be saved there. "
|
|
||||||
"Else, lowbit model will be loaded.",
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
model_path = args.repo_id_or_model_path
|
|
||||||
|
|
||||||
if not os.path.exists(args.save_directory):
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
||||||
optimize_model=True,
|
|
||||||
pipeline=True,
|
|
||||||
max_context_len=args.max_context_len,
|
|
||||||
max_prompt_len=args.max_prompt_len,
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
attn_implementation="eager",
|
|
||||||
quantization_group_size=args.quantization_group_size,
|
|
||||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
|
||||||
trust_remote_code=True,
|
|
||||||
save_directory=args.save_directory)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
||||||
tokenizer.save_pretrained(args.save_directory)
|
|
||||||
else:
|
|
||||||
model = AutoModelForCausalLM.load_low_bit(
|
|
||||||
args.save_directory,
|
|
||||||
attn_implementation="eager",
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
max_context_len=args.max_context_len,
|
|
||||||
max_prompt_len=args.max_prompt_len,
|
|
||||||
pipeline=True,
|
|
||||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
|
||||||
trust_remote_code=True
|
|
||||||
)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
|
||||||
|
|
||||||
|
|
||||||
if args.disable_streaming:
|
|
||||||
streamer = None
|
|
||||||
else:
|
|
||||||
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
|
||||||
|
|
||||||
print("-" * 80)
|
|
||||||
print("done")
|
|
||||||
with torch.inference_mode():
|
|
||||||
print("finish to load")
|
|
||||||
for i in range(3):
|
|
||||||
prompt = "<用户>{}<AI>".format(args.prompt)
|
|
||||||
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
|
||||||
print("-" * 20, "Input", "-" * 20)
|
|
||||||
print("input length:", len(_input_ids[0]))
|
|
||||||
print(prompt)
|
|
||||||
print("-" * 20, "Output", "-" * 20)
|
|
||||||
st = time.time()
|
|
||||||
output = model.generate(
|
|
||||||
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
|
|
||||||
)
|
|
||||||
end = time.time()
|
|
||||||
if args.disable_streaming:
|
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
|
||||||
print(output_str)
|
|
||||||
print(f"Inference time: {end-st} s")
|
|
||||||
|
|
||||||
print("-" * 80)
|
|
||||||
print("done")
|
|
||||||
print("success shut down")
|
|
||||||
|
|
@ -1,118 +0,0 @@
|
||||||
#
|
|
||||||
# Copyright 2016 The BigDL Authors.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
#
|
|
||||||
|
|
||||||
|
|
||||||
import os
|
|
||||||
import torch
|
|
||||||
import time
|
|
||||||
import argparse
|
|
||||||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
|
|
||||||
from transformers import AutoTokenizer, TextStreamer
|
|
||||||
from transformers.utils import logging
|
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description="Predict Tokens using `generate()` API for npu model"
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--repo-id-or-model-path",
|
|
||||||
type=str,
|
|
||||||
default="Qwen/Qwen2.5-7B-Instruct", # Or Qwen2-7B-Instruct, Qwen2-1.5B-Instruct
|
|
||||||
help="The huggingface repo id for the Qwen model to be downloaded"
|
|
||||||
", or the path to the huggingface checkpoint folder",
|
|
||||||
)
|
|
||||||
parser.add_argument('--prompt', type=str, default="AI是什么?",
|
|
||||||
help='Prompt to infer')
|
|
||||||
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
|
|
||||||
parser.add_argument("--max-context-len", type=int, default=1024)
|
|
||||||
parser.add_argument("--max-prompt-len", type=int, default=512)
|
|
||||||
parser.add_argument("--quantization_group_size", type=int, default=0)
|
|
||||||
parser.add_argument('--low-bit', type=str, default="sym_int4",
|
|
||||||
help='Low bit precision to quantize the model')
|
|
||||||
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
|
|
||||||
parser.add_argument("--disable-streaming", action="store_true", default=False)
|
|
||||||
parser.add_argument("--save-directory", type=str,
|
|
||||||
required=True,
|
|
||||||
help="The path of folder to save converted model, "
|
|
||||||
"If path not exists, lowbit model will be saved there. "
|
|
||||||
"Else, lowbit model will be loaded.",
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
model_path = args.repo_id_or_model_path
|
|
||||||
|
|
||||||
if not os.path.exists(args.save_directory):
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
||||||
optimize_model=True,
|
|
||||||
pipeline=True,
|
|
||||||
load_in_low_bit=args.low_bit,
|
|
||||||
max_context_len=args.max_context_len,
|
|
||||||
max_prompt_len=args.max_prompt_len,
|
|
||||||
quantization_group_size=args.quantization_group_size,
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
attn_implementation="eager",
|
|
||||||
transpose_value_cache=not args.disable_transpose_value_cache,
|
|
||||||
trust_remote_code=True,
|
|
||||||
save_directory=args.save_directory)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
||||||
tokenizer.save_pretrained(args.save_directory)
|
|
||||||
else:
|
|
||||||
model = AutoModelForCausalLM.load_low_bit(
|
|
||||||
args.save_directory,
|
|
||||||
attn_implementation="eager",
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
max_context_len=args.max_context_len,
|
|
||||||
max_prompt_len=args.max_prompt_len,
|
|
||||||
pipeline=True,
|
|
||||||
transpose_value_cache=not args.disable_transpose_value_cache)
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True)
|
|
||||||
|
|
||||||
|
|
||||||
if args.disable_streaming:
|
|
||||||
streamer = None
|
|
||||||
else:
|
|
||||||
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)
|
|
||||||
|
|
||||||
print("-" * 80)
|
|
||||||
print("done")
|
|
||||||
messages = [{"role": "system", "content": "You are a helpful assistant."},
|
|
||||||
{"role": "user", "content": args.prompt}]
|
|
||||||
text = tokenizer.apply_chat_template(messages,
|
|
||||||
tokenize=False,
|
|
||||||
add_generation_prompt=True)
|
|
||||||
with torch.inference_mode():
|
|
||||||
print("finish to load")
|
|
||||||
for i in range(3):
|
|
||||||
_input_ids = tokenizer([text], return_tensors="pt").input_ids
|
|
||||||
print("-" * 20, "Input", "-" * 20)
|
|
||||||
print("input length:", len(_input_ids[0]))
|
|
||||||
print(text)
|
|
||||||
print("-" * 20, "Output", "-" * 20)
|
|
||||||
st = time.time()
|
|
||||||
output = model.generate(
|
|
||||||
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
|
|
||||||
)
|
|
||||||
end = time.time()
|
|
||||||
if args.disable_streaming:
|
|
||||||
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
|
|
||||||
print(output_str)
|
|
||||||
print(f"Inference time: {end-st} s")
|
|
||||||
|
|
||||||
print("-" * 80)
|
|
||||||
print("done")
|
|
||||||
print("success shut down")
|
|
||||||
|
|
@ -48,7 +48,7 @@ Please refer to [Quick Start](../../../../../../docs/mddocs/Quickstart/npu_quick
|
||||||
### 1.2 Runtime Configurations
|
### 1.2 Runtime Configurations
|
||||||
Please refer to [Quick Start](../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#runtime-configurations) for environment variables setting based on your device.
|
Please refer to [Quick Start](../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#runtime-configurations) for environment variables setting based on your device.
|
||||||
|
|
||||||
## 2. Run Optimized Models (Experimental)
|
## 2. Run Optimized Models
|
||||||
The examples below show how to run the **_optimized HuggingFace model implementations_** on Intel NPU, including
|
The examples below show how to run the **_optimized HuggingFace model implementations_** on Intel NPU, including
|
||||||
- [Llama2-7B](./llama2.py)
|
- [Llama2-7B](./llama2.py)
|
||||||
- [Llama3-8B](./llama3.py)
|
- [Llama3-8B](./llama3.py)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue