Quickstart: Run/Develop PyTorch in VSCode with Docker on Intel GPU (#11070)
* add quickstart: Run/Develop PyTorch in VSCode with Docker on Intel GPU * add gif * update index.rst * update link * update GIFs
This commit is contained in:
parent
71bcd18f44
commit
8fdc8fb197
4 changed files with 145 additions and 1 deletions
|
|
@ -83,6 +83,9 @@
|
|||
<li>
|
||||
<a href="doc/LLM/DockerGuides/docker_pytorch_inference_gpu.html">Run PyTorch Inference on an Intel GPU via Docker</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="doc/LLM/DockerGuides/docker_run_pytorch_inference_in_vscode.html">Run/Develop PyTorch in VSCode with Docker on Intel GPU</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="doc/LLM/DockerGuides/docker_cpp_xpu_quickstart.html">Run llama.cpp/Ollama/Open-WebUI on an Intel GPU via Docker</a>
|
||||
</li>
|
||||
|
|
|
|||
|
|
@ -21,6 +21,7 @@ subtrees:
|
|||
- entries:
|
||||
- file: doc/LLM/DockerGuides/docker_windows_gpu
|
||||
- file: doc/LLM/DockerGuides/docker_pytorch_inference_gpu
|
||||
- file: doc/LLM/DockerGuides/docker_run_pytorch_inference_in_vscode
|
||||
- file: doc/LLM/DockerGuides/docker_cpp_xpu_quickstart
|
||||
- file: doc/LLM/Quickstart/index
|
||||
title: "Quickstart"
|
||||
|
|
|
|||
|
|
@ -0,0 +1,139 @@
|
|||
# Run/Develop PyTorch in VSCode with Docker on Intel GPU
|
||||
|
||||
An IPEX-LLM container is a pre-configured environment that includes all necessary dependencies for running LLMs on Intel GPUs.
|
||||
|
||||
This guide provides steps to run/develop PyTorch examples in VSCode with Docker on Intel GPUs.
|
||||
|
||||
```eval_rst
|
||||
.. note::
|
||||
|
||||
This guide assumes you have already installed VSCode in your environment.
|
||||
|
||||
To run/develop on Windows, install VSCode and then follow the steps below.
|
||||
|
||||
To run/develop on Linux, you might open VSCode first and SSH to a remote Linux machine, then proceed with the following steps.
|
||||
|
||||
```
|
||||
|
||||
|
||||
## Install Docker
|
||||
|
||||
Follow the [Docker installation Guide](./docker_windows_gpu.html#install-docker) to install docker on either Linux or Windows.
|
||||
|
||||
## Install Extensions for VSCcode
|
||||
|
||||
#### Install Dev Containers Extension
|
||||
For both Linux/Windows, you will need to Install Dev Containers extension.
|
||||
|
||||
Open the Extensions view in VSCode (you can use the shortcut `Ctrl+Shift+X`), then search for and install the `Dev Containers` extension.
|
||||
|
||||
<a href="https://github.com/liu-shaojun/ipex-llm/assets/61072813/7fc4f9aa-04ea-4a13-82e6-89ab5c5d72d8" target="_blank">
|
||||
<img src="https://github.com/liu-shaojun/ipex-llm/assets/61072813/7fc4f9aa-04ea-4a13-82e6-89ab5c5d72d8" width=100%; />
|
||||
</a>
|
||||
|
||||
|
||||
#### Install WSL Extension for Windows
|
||||
|
||||
For Windows, you will need to install wsl extension to to the WSL environment. Open the Extensions view in VSCode (you can use the shortcut `Ctrl+Shift+X`), then search for and install the `WSL` extension.
|
||||
|
||||
Press F1 to bring up the Command Palette and type in `WSL: Connect to WSL Using Distro...` and select it and then select a specific WSL distro `Ubuntu`
|
||||
|
||||
|
||||
<a href="https://github.com/liu-shaojun/ipex-llm/assets/61072813/9bce2cf3-f09a-4a3c-9cfa-1bb88a4b2ab9" target="_blank">
|
||||
<img src="https://github.com/liu-shaojun/ipex-llm/assets/61072813/9bce2cf3-f09a-4a3c-9cfa-1bb88a4b2ab9" width=100%; />
|
||||
</a>
|
||||
|
||||
|
||||
## Launch Container
|
||||
|
||||
Open the Terminal in VSCode (you can use the shortcut `` Ctrl+Shift+` ``), then pull ipex-llm-xpu Docker Image:
|
||||
|
||||
```bash
|
||||
docker pull intelanalytics/ipex-llm-xpu:latest
|
||||
```
|
||||
|
||||
Start ipex-llm-xpu Docker Container:
|
||||
|
||||
```eval_rst
|
||||
.. tabs::
|
||||
.. tab:: Linux
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:latest
|
||||
export CONTAINER_NAME=my_container
|
||||
export MODEL_PATH=/llm/models[change to your model path]
|
||||
|
||||
docker run -itd \
|
||||
--net=host \
|
||||
--device=/dev/dri \
|
||||
--memory="32G" \
|
||||
--name=$CONTAINER_NAME \
|
||||
--shm-size="16g" \
|
||||
-v $MODEL_PATH:/llm/models \
|
||||
$DOCKER_IMAGE
|
||||
|
||||
.. tab:: Windows WSL
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
#/bin/bash
|
||||
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:latest
|
||||
export CONTAINER_NAME=my_container
|
||||
export MODEL_PATH=/llm/models[change to your model path]
|
||||
|
||||
sudo docker run -itd \
|
||||
--net=host \
|
||||
--privileged \
|
||||
--device /dev/dri \
|
||||
--memory="32G" \
|
||||
--name=$CONTAINER_NAME \
|
||||
--shm-size="16g" \
|
||||
-v $MODEL_PATH:/llm/llm-models \
|
||||
-v /usr/lib/wsl:/usr/lib/wsl \
|
||||
$DOCKER_IMAGE
|
||||
```
|
||||
|
||||
|
||||
## Run/Develop Pytorch Examples
|
||||
|
||||
Press F1 to bring up the Command Palette and type in `Dev Containers: Attach to Running Container...` and select it and then select `my_container`
|
||||
|
||||
Now you are in a running Docker Container, Open folder `/ipex-llm/python/llm/example/GPU/HF-Transformers-AutoModels/Model/`.
|
||||
|
||||
<a href="https://github.com/liu-shaojun/ipex-llm/assets/61072813/2a8a3520-dd67-49c3-969a-06714d5f91eb" target="_blank">
|
||||
<img src="https://github.com/liu-shaojun/ipex-llm/assets/61072813/2a8a3520-dd67-49c3-969a-06714d5f91eb" width=100%; />
|
||||
</a>
|
||||
|
||||
In this folder, we provide several PyTorch examples that you could apply IPEX-LLM INT4 optimizations on models on Intel GPUs.
|
||||
|
||||
For example, if your model is Llama-2-7b-chat-hf and mounted on /llm/models, you can navigate to llama2 directory, excute the following command to run example:
|
||||
```bash
|
||||
cd <model_dir>
|
||||
python ./generate.py --repo-id-or-model-path /llm/models/Llama-2-7b-chat-hf --prompt PROMPT --n-predict N_PREDICT
|
||||
```
|
||||
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
|
||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
**Sample Output**
|
||||
```log
|
||||
Inference time: xxxx s
|
||||
-------------------- Prompt --------------------
|
||||
<s>[INST] <<SYS>>
|
||||
|
||||
<</SYS>>
|
||||
|
||||
What is AI? [/INST]
|
||||
-------------------- Output --------------------
|
||||
[INST] <<SYS>>
|
||||
|
||||
<</SYS>>
|
||||
|
||||
What is AI? [/INST] Artificial intelligence (AI) is the broader field of research and development aimed at creating machines that can perform tasks that typically require human intelligence,
|
||||
```
|
||||
|
||||
You can develop your own PyTorch example based on these examples.
|
||||
|
|
@ -6,6 +6,7 @@ In this section, you will find guides related to using IPEX-LLM with Docker, cov
|
|||
|
||||
* `Overview of IPEX-LLM Containers for Intel GPU <./docker_windows_gpu.html>`_
|
||||
* `Run PyTorch Inference on an Intel GPU via Docker <./docker_pytorch_inference_gpu.html>`_
|
||||
* `Run/Develop PyTorch in VSCode with Docker on Intel GPU <./docker_pytorch_inference_gpu.html>`_
|
||||
* `Run llama.cpp/Ollama/open-webui with Docker on Intel GPU <./docker_cpp_xpu_quickstart.html>`_
|
||||
* `Run IPEX-LLM integrated FastChat with Docker on Intel GPU <./fastchat_docker_quickstart>`_
|
||||
* `Run IPEX-LLM integrated vLLM with Docker on Intel GPU <./vllm_docker_quickstart>`_
|
||||
Loading…
Reference in a new issue