LLM: improve response speed in multi-turn chat (#9299)

* update

* fix stop word and add chatglm2 support

* remove system prompt
This commit is contained in:
binbin Deng 2023-11-01 10:30:44 +08:00 committed by GitHub
parent d4ab5904ef
commit 8ef8e25178
2 changed files with 283 additions and 55 deletions

View file

@ -13,6 +13,31 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/mit-han-lab/streaming-llm/blob/main/examples/run_streaming_llama.py
# which is licensed under the MIT license:
#
# MIT License
#
# Copyright (c) 2023 MIT HAN Lab
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
import argparse
@ -27,46 +52,98 @@ from transformers.generation.stopping_criteria import StoppingCriteriaList
from colorama import Fore
from bigdl.llm import optimize_model
from kv_cache import StartRecentKVCache
SYSTEM_PROMPT = "A chat between a curious human <human> and an artificial intelligence assistant <bot>.\
The assistant gives helpful, detailed, and polite answers to the human's questions."
HUMAN_ID = "<human>"
BOT_ID = "<bot>"
# chat_history formated in [(iput_str, output_str)]
def format_prompt(input_str,
chat_history):
prompt = [f"{SYSTEM_PROMPT}\n"]
for history_input_str, history_output_str in chat_history:
prompt.append(f"{HUMAN_ID} {history_input_str}\n{BOT_ID} {history_output_str}\n")
prompt.append(f"{HUMAN_ID} {input_str}\n{BOT_ID} ")
return "".join(prompt)
def stream_chat(model,
tokenizer,
stopping_criteria,
input_str,
chat_history):
prompt = format_prompt(input_str, chat_history)
# print(prompt)
input_ids = tokenizer([prompt], return_tensors="pt")
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(input_ids, streamer=streamer, max_new_tokens=512, stopping_criteria=stopping_criteria)
from threading import Thread
# to ensure non-blocking access to the generated text, generation process should be ran in a separate thread
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
output_str = []
@torch.no_grad()
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
for partial_output_str in streamer:
output_str.append(partial_output_str)
# remove the last HUMAN_ID if exists
print(partial_output_str.replace(f"{HUMAN_ID}", ""), end="")
outputs = model(
input_ids=input_ids,
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = outputs.past_key_values
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
generated_ids = [pred_token_idx.item()]
pos = 0
for _ in range(max_gen_len - 1):
outputs = model(
input_ids=pred_token_idx,
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = outputs.past_key_values
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
generated_ids.append(pred_token_idx.item())
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True,
clean_up_tokenization_spaces=True,
spaces_between_special_tokens=False)
chat_history.append((input_str, "".join(output_str).replace(f"{HUMAN_ID}", "").rstrip()))
now = len(generated_text) - 1
if now > pos:
if '\n<' in generated_text:
break
else:
print("".join(generated_text[pos:now]), end="", flush=True)
pos = now
if pred_token_idx == tokenizer.eos_token_id:
break
print(" ".join(generated_text[pos:]).strip('\n<'), flush=True)
return past_key_values
@torch.no_grad()
def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512):
past_key_values = None
while True:
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
if user_input == "stop": # let's stop the conversation when user input "stop"
break
prompt = f"{HUMAN_ID} {user_input}\n{BOT_ID} "
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
seq_len = input_ids.shape[1]
if kv_cache is not None:
space_needed = seq_len + max_gen_len
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)
past_key_values = greedy_generate(
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len
)
@torch.no_grad()
def chatglm2_stream_chat(model, tokenizer):
chat_history = []
past_key_values = None
current_length = 0
stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)])
max_past_length = 2048
while True:
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
if user_input == "stop": # let's stop the conversation when user input "stop"
break
print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="")
prompt = f"问:{user_input}\n答:"
for response, chat_history, past_key_values in model.stream_chat(tokenizer, prompt,
history=chat_history,
stopping_criteria=stopping_criteria,
past_key_values=past_key_values,
return_past_key_values=True):
print(response[current_length:], end="", flush=True)
current_length = len(response)
if past_key_values[0][0].shape[0] > max_past_length:
# To avoid out of memory, only keep recent key_values
new_values_list = []
for i in range(len(past_key_values)):
new_value = []
for val in past_key_values[i]:
new_v = val[-max_past_length:]
new_value.append(new_v)
new_values_list.append(tuple(new_value))
past_key_values = tuple(new_values_list)
def auto_select_model(model_name):
try:
@ -100,17 +177,10 @@ if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)])
chat_history = []
while True:
with torch.inference_mode():
user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET)
if user_input == "stop": # let's stop the conversation when user input "stop"
break
if model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel":
chatglm2_stream_chat(model=model, tokenizer=tokenizer)
else:
kv_cache = StartRecentKVCache()
stream_chat(model=model,
tokenizer=tokenizer,
stopping_criteria=stopping_criteria,
input_str=user_input,
chat_history=chat_history)
kv_cache=kv_cache)

View file

@ -0,0 +1,158 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/mit-han-lab/streaming-llm/blob/main/streaming_llm/kv_cache.py
# which is licensed under the MIT license:
#
# MIT License
#
# Copyright (c) 2023 MIT HAN Lab
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
def slice1d(x, start, end):
return x[:, start:end, ...]
def slice2d(x, start, end):
return x[:, :, start:end, ...]
def slice3d(x, start, end):
return x[:, :, :, start:end, ...]
DIM_TO_SLICE = {
1: slice1d,
2: slice2d,
3: slice3d,
}
class StartRecentKVCache:
def __init__(
self,
start_size=4,
recent_size=512,
k_seq_dim=2,
v_seq_dim=2,
):
print(f"StartRecentKVCache: {start_size}, {recent_size}")
self.start_size = start_size
self.recent_size = recent_size
self.cache_size = start_size + recent_size
self.k_seq_dim = k_seq_dim
self.v_seq_dim = v_seq_dim
self.k_slice = DIM_TO_SLICE[k_seq_dim]
self.v_slice = DIM_TO_SLICE[v_seq_dim]
def __call__(self, past_key_values):
if past_key_values is None:
return None
seq_len = past_key_values[0][0].size(self.k_seq_dim)
if seq_len <= self.cache_size:
return past_key_values
return [
[
torch.cat(
[
self.k_slice(k, 0, self.start_size),
self.k_slice(k, seq_len - self.recent_size, seq_len),
],
dim=self.k_seq_dim,
),
torch.cat(
[
self.v_slice(v, 0, self.start_size),
self.v_slice(v, seq_len - self.recent_size, seq_len),
],
dim=self.v_seq_dim,
),
]
for k, v in past_key_values
]
def evict_for_space(self, past_key_values, num_coming):
if past_key_values is None:
return None
seq_len = past_key_values[0][0].size(self.k_seq_dim)
if seq_len + num_coming <= self.cache_size:
return past_key_values
return [
[
torch.cat(
[
self.k_slice(k, 0, self.start_size),
self.k_slice(
k, seq_len - self.recent_size + num_coming, seq_len
),
],
dim=self.k_seq_dim,
),
torch.cat(
[
self.v_slice(v, 0, self.start_size),
self.v_slice(
v, seq_len - self.recent_size + num_coming, seq_len
),
],
dim=self.v_seq_dim,
),
]
for k, v in past_key_values
]
def evict_range(self, past_key_values, start, end):
if past_key_values is None:
return None
seq_len = past_key_values[0][0].size(self.k_seq_dim)
assert start <= end and end <= seq_len
return [
[
torch.cat(
[
self.k_slice(k, 0, start),
self.k_slice(k, end, seq_len),
],
dim=self.k_seq_dim,
),
torch.cat(
[
self.v_slice(v, 0, start),
self.v_slice(v, end, seq_len),
],
dim=self.v_seq_dim,
),
]
for k, v in past_key_values
]