LLM: Refactor Pipeline-Parallel-FastAPI example (#11319)
Initially Refactor for Pipeline-Parallel-FastAPI example
This commit is contained in:
parent
34c15d3a10
commit
8ddae22cfb
7 changed files with 147 additions and 705 deletions
|
|
@ -22,7 +22,7 @@ pip install mpi4py fastapi uvicorn openai
|
|||
pip install gradio # for gradio web UI
|
||||
conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
|
||||
|
||||
pip install transformers==4.31.0 # for llama2 models
|
||||
pip install transformers==4.37.0
|
||||
```
|
||||
|
||||
### 2. Run pipeline parallel serving on multiple GPUs
|
||||
|
|
|
|||
|
|
@ -30,7 +30,6 @@ def perform_request(session, url, payload, headers):
|
|||
start_time = time.perf_counter()
|
||||
with session.post(url, json=payload, headers=headers, stream=True) as response:
|
||||
response.raise_for_status()
|
||||
|
||||
first_token_time = None
|
||||
last_token_time = 0
|
||||
first_token_inference_time = None
|
||||
|
|
@ -38,14 +37,22 @@ def perform_request(session, url, payload, headers):
|
|||
next_token_time = []
|
||||
i = 0
|
||||
for line in response.iter_lines():
|
||||
|
||||
token_time = time.perf_counter() - start_time
|
||||
if line:
|
||||
data = line.decode("utf-8").strip()
|
||||
data = line.decode('utf-8').strip()
|
||||
if data.startswith('data: '):
|
||||
data = data[len('data: '):]
|
||||
i = i + 1
|
||||
try:
|
||||
json_data = json.loads(data)
|
||||
if json_data["message"] is not None:
|
||||
if 'choices' in json_data and len(json_data['choices']) > 0:
|
||||
choice = json_data['choices'][0]
|
||||
if 'finish_reason' in choice and (choice['finish_reason'] == 'length' or choice['finish_reason'] == 'stop'):
|
||||
if 'first_token_time' in choice and isinstance(choice['first_token_time'], float):
|
||||
first_token_inference_time = choice['first_token_time']
|
||||
if 'rest_token_time' in choice and isinstance(choice['rest_token_time'], float):
|
||||
next_token_inference_time = choice['rest_token_time']
|
||||
else:
|
||||
if first_token_time is None:
|
||||
first_token_time = token_time
|
||||
else:
|
||||
|
|
@ -76,11 +83,11 @@ def extend_list_to_length(lst, target_length):
|
|||
def benchmark(
|
||||
llm_urls,
|
||||
prompt,
|
||||
num_warmup_requests,
|
||||
num_requests,
|
||||
max_concurrent_requests,
|
||||
max_tokens,
|
||||
prompt_length,
|
||||
is_warmup=False,
|
||||
):
|
||||
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
|
@ -92,6 +99,8 @@ def benchmark(
|
|||
next_token_inference_times = []
|
||||
cur_url_index = 0
|
||||
|
||||
num_requests = num_requests + num_warmup_requests
|
||||
|
||||
with requests.Session() as session:
|
||||
with ThreadPoolExecutor(max_workers=max_concurrent_requests) as executor:
|
||||
llm_url = llm_urls[cur_url_index]
|
||||
|
|
@ -101,8 +110,17 @@ def benchmark(
|
|||
cur_len = len(cur_llm_urls)
|
||||
|
||||
payload = {
|
||||
"model": "Meta-Llama-3-8B-Instruct",
|
||||
"prompt": prompt,
|
||||
"n_predict": max_tokens,
|
||||
"max_tokens": max_tokens,
|
||||
"stream": True,
|
||||
# for vllm openai api server
|
||||
"ignore_eos": True,
|
||||
"n": 1,
|
||||
"best_of": 1,
|
||||
"use_beam_search": False,
|
||||
"temperature": 0.0,
|
||||
"top_p": 1.0,
|
||||
}
|
||||
futures = [
|
||||
executor.submit(
|
||||
|
|
@ -115,14 +133,13 @@ def benchmark(
|
|||
for index in range(num_requests)
|
||||
]
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if is_warmup:
|
||||
phase = "Warm Up"
|
||||
else:
|
||||
phase = "Benchmarking"
|
||||
|
||||
with tqdm(total=num_requests, desc=phase, unit="req", ncols=100) as pbar:
|
||||
cur_index = 0
|
||||
for future in concurrent.futures.as_completed(futures):
|
||||
if cur_index == num_warmup_requests:
|
||||
start_time = time.perf_counter()
|
||||
try:
|
||||
(
|
||||
first_token_latency,
|
||||
|
|
@ -131,6 +148,8 @@ def benchmark(
|
|||
first_token_inference_time,
|
||||
next_token_inference_time,
|
||||
) = future.result()
|
||||
cur_index = cur_index + 1
|
||||
if cur_index > num_warmup_requests:
|
||||
first_token_latencies.append(first_token_latency)
|
||||
next_token_latencies.append(next_token_latency)
|
||||
total_responce_times.append(total_responce_time)
|
||||
|
|
@ -144,8 +163,6 @@ def benchmark(
|
|||
print(f"Request failed: {e}")
|
||||
pbar.update(1)
|
||||
|
||||
if is_warmup:
|
||||
return
|
||||
total_time = time.perf_counter() - start_time
|
||||
log_file = f"{max_concurrent_requests}.log"
|
||||
|
||||
|
|
@ -174,9 +191,6 @@ def benchmark(
|
|||
)
|
||||
p90_first_token_latency = np.percentile(first_token_latencies, 90)
|
||||
p95_first_token_latency = np.percentile(first_token_latencies, 95)
|
||||
# average_first_token_inference_latency = np.mean(
|
||||
# first_token_inference_times
|
||||
# )
|
||||
print(
|
||||
f"Average first token latency: {average_first_token_latency * 1000} milliseconds.",
|
||||
file=file,
|
||||
|
|
@ -189,10 +203,6 @@ def benchmark(
|
|||
f"P95 first token latency: {p95_first_token_latency * 1000} milliseconds.",
|
||||
file=file,
|
||||
)
|
||||
# print(
|
||||
# f"Average first token inference latency: {average_first_token_inference_latency * 1000} milliseconds.",
|
||||
# file=file,
|
||||
# )
|
||||
print(file=file)
|
||||
|
||||
if next_token_latencies:
|
||||
|
|
@ -201,9 +211,6 @@ def benchmark(
|
|||
)
|
||||
p90_next_token_latency = np.percentile(next_token_latencies, 90)
|
||||
p95_next_token_latency = np.percentile(next_token_latencies, 95)
|
||||
# average_next_token_inference_latency = np.mean(
|
||||
# next_token_inference_times
|
||||
# )
|
||||
print(
|
||||
f"Average next token latency: {average_next_token_latency * 1000} milliseconds.",
|
||||
file=file,
|
||||
|
|
@ -216,14 +223,10 @@ def benchmark(
|
|||
f"P95 next token latency: {p95_next_token_latency * 1000} milliseconds.",
|
||||
file=file,
|
||||
)
|
||||
# print(
|
||||
# f"Average next token inference latency: {average_next_token_inference_latency * 1000} milliseconds.",
|
||||
# file=file,
|
||||
# )
|
||||
print(file=file)
|
||||
|
||||
|
||||
LLM_URLS = [f"http://localhost:{PORT}/generate_stream/" for PORT in [8000]]
|
||||
LLM_URLS = [f"http://localhost:{PORT}/v1/completions" for PORT in [8000]]
|
||||
|
||||
parser = argparse.ArgumentParser(description="Set prompt length.")
|
||||
parser.add_argument(
|
||||
|
|
@ -254,17 +257,6 @@ MAX_TOKENS = args.max_new_tokens
|
|||
|
||||
for MAX_CONCURRENT_REQUESTS in args.max_concurrent_requests:
|
||||
NUM_WARMUP = 5 * MAX_CONCURRENT_REQUESTS
|
||||
NUM_REQUESTS = 10 * MAX_CONCURRENT_REQUESTS
|
||||
NUM_REQUESTS = 30 * MAX_CONCURRENT_REQUESTS
|
||||
|
||||
# warm up
|
||||
benchmark(
|
||||
LLM_URLS,
|
||||
PROMPT,
|
||||
NUM_WARMUP,
|
||||
MAX_CONCURRENT_REQUESTS,
|
||||
MAX_TOKENS,
|
||||
PROMPT_LENGTH,
|
||||
is_warmup=True,
|
||||
)
|
||||
|
||||
benchmark(LLM_URLS, PROMPT, NUM_REQUESTS, MAX_CONCURRENT_REQUESTS, MAX_TOKENS, PROMPT_LENGTH)
|
||||
benchmark(LLM_URLS, PROMPT, NUM_WARMUP, NUM_REQUESTS, MAX_CONCURRENT_REQUESTS, MAX_TOKENS, PROMPT_LENGTH)
|
||||
|
|
|
|||
|
|
@ -1,328 +0,0 @@
|
|||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.models.llama.modeling_llama import LlamaConfig, LlamaDecoderLayer, LlamaRMSNorm, LlamaPreTrainedModel
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||||
|
||||
from torch import nn
|
||||
import torch
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
from typing import List, Optional, Tuple, Union, Iterator
|
||||
from transformers.utils import logging
|
||||
logger = logging.get_logger(__name__)
|
||||
import numpy as np
|
||||
import time
|
||||
from transformers import AutoTokenizer, AutoConfig
|
||||
import torch.distributed as dist
|
||||
from pipeline_models import (
|
||||
_make_causal_mask, _expand_mask, DummyLayer, PPConfig,
|
||||
PipelineBaseModel,
|
||||
)
|
||||
|
||||
|
||||
class LlamaModel(LlamaPreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: LlamaConfig
|
||||
"""
|
||||
|
||||
def __init__(self, config: LlamaConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
# pp modification
|
||||
self.pp_config = PPConfig(pp_rank=dist.get_rank(), pp_world_size=dist.get_world_size())
|
||||
nr_slices = self.pp_config.pp_world_size
|
||||
# self.config.num_hidden_layers = 8
|
||||
slice_size = (self.config.num_hidden_layers + nr_slices -
|
||||
1) // nr_slices
|
||||
self.layer_start = slice_size * self.pp_config.pp_rank
|
||||
self.layer_end = self.layer_start + min(slice_size,
|
||||
self.config.num_hidden_layers - self.layer_start)
|
||||
self.num_layers = self.layer_end - self.layer_start
|
||||
layers = []
|
||||
for i in range(self.config.num_hidden_layers):
|
||||
if i < self.layer_start or i >= self.layer_end:
|
||||
layers.append(DummyLayer())
|
||||
else:
|
||||
layers.append(LlamaDecoderLayer(config))
|
||||
self.layers = nn.ModuleList(layers)
|
||||
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
if self.pp_config.is_head:
|
||||
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||||
if self.pp_config.is_tail:
|
||||
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embed_tokens = value
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
||||
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
||||
# create causal mask
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
combined_attention_mask = None
|
||||
if input_shape[-1] > 1:
|
||||
combined_attention_mask = _make_causal_mask(
|
||||
input_shape,
|
||||
inputs_embeds.dtype,
|
||||
device=inputs_embeds.device,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
||||
inputs_embeds.device
|
||||
)
|
||||
combined_attention_mask = (
|
||||
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
||||
)
|
||||
|
||||
return combined_attention_mask
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds for pp
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
assert self.pp_config.is_head, "input_ids is only supported on the head stage"
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
assert not self.pp_config.is_head, "inputs_embeds is only supported on the tail stage"
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
|
||||
if past_key_values is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[2]
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
|
||||
if position_ids is None:
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
position_ids = torch.arange(
|
||||
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
||||
)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||
else:
|
||||
position_ids = position_ids.view(-1, seq_length).long()
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
# embed positions
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(
|
||||
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
||||
)
|
||||
attention_mask = self._prepare_decoder_attention_mask(
|
||||
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
for idx in range(self.num_layers):
|
||||
decoder_layer = self.layers[self.layer_start + idx]
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
if self.pp_config.is_tail:
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
|
||||
class LlamaForCausalLM(LlamaPreTrainedModel):
|
||||
|
||||
def __init__(self, config: LlamaConfig):
|
||||
super().__init__(config=config)
|
||||
self.config = config
|
||||
self.pp_config = PPConfig(pp_rank=dist.get_rank(), pp_world_size=dist.get_world_size())
|
||||
self.model = LlamaModel(config)
|
||||
self.pretraining_tp = config.pretraining_tp
|
||||
self.vocab_size = config.vocab_size
|
||||
if self.pp_config.is_tail:
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embed_tokens = value
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
if self.pp_config.is_tail:
|
||||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||||
shift_labels = shift_labels.view(-1)
|
||||
# Enable model parallelism
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
return outputs
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
||||
):
|
||||
if past_key_values:
|
||||
input_ids = input_ids[:, -1:]
|
||||
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
if attention_mask is not None and position_ids is None:
|
||||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
if past_key_values:
|
||||
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"position_ids": position_ids,
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
@staticmethod
|
||||
def _reorder_cache(past_key_values, beam_idx):
|
||||
reordered_past = ()
|
||||
for layer_past in past_key_values:
|
||||
reordered_past += (
|
||||
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
||||
)
|
||||
return reordered_past
|
||||
|
|
@ -1,15 +1,15 @@
|
|||
from torch import nn
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from typing import List, Optional, Tuple, Union, Iterator
|
||||
import time
|
||||
from transformers import AutoTokenizer, AutoConfig
|
||||
from transformers.cache_utils import Cache
|
||||
from transformers.utils import logging
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||||
|
||||
import numpy as np
|
||||
import asyncio, uuid
|
||||
import threading
|
||||
from pydantic import BaseModel
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
|
@ -23,227 +23,15 @@ class PPConfig:
|
|||
self.is_head = self.pp_rank == 0
|
||||
self.is_tail = self.pp_rank == self.pp_world_size - 1
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
||||
def _make_causal_mask(
|
||||
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
||||
):
|
||||
"""
|
||||
Make causal mask used for bi-directional self-attention.
|
||||
"""
|
||||
bsz, tgt_len = input_ids_shape
|
||||
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
||||
mask_cond = torch.arange(mask.size(-1), device=device)
|
||||
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
||||
mask = mask.to(dtype)
|
||||
|
||||
if past_key_values_length > 0:
|
||||
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
||||
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
||||
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
||||
"""
|
||||
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||
"""
|
||||
bsz, src_len = mask.size()
|
||||
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||
|
||||
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||
|
||||
inverted_mask = 1.0 - expanded_mask
|
||||
|
||||
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
||||
|
||||
|
||||
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
||||
# create causal mask
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
combined_attention_mask = None
|
||||
if input_shape[-1] > 1:
|
||||
combined_attention_mask = _make_causal_mask(
|
||||
input_shape,
|
||||
inputs_embeds.dtype,
|
||||
device=inputs_embeds.device,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
||||
inputs_embeds.device
|
||||
)
|
||||
combined_attention_mask = (
|
||||
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
||||
)
|
||||
|
||||
return combined_attention_mask
|
||||
|
||||
class DummyLayer(nn.Module):
|
||||
pass
|
||||
|
||||
|
||||
class PipelineBaseModel(nn.Module):
|
||||
def __init__(self, config):
|
||||
self.pp_config = PPConfig(pp_rank=dist.get_rank(), pp_world_size=dist.get_world_size())
|
||||
nr_slices = self.pp_config.pp_world_size
|
||||
# self.config.num_hidden_layers = 8
|
||||
slice_size = (self.config.num_hidden_layers + nr_slices -
|
||||
1) // nr_slices
|
||||
self.layer_start = slice_size * self.pp_config.pp_rank
|
||||
self.layer_end = self.layer_start + min(slice_size,
|
||||
self.config.num_hidden_layers - self.layer_start)
|
||||
self.num_layers = self.layer_end - self.layer_start
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
||||
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
||||
# create causal mask
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
combined_attention_mask = None
|
||||
if input_shape[-1] > 1:
|
||||
combined_attention_mask = _make_causal_mask(
|
||||
input_shape,
|
||||
inputs_embeds.dtype,
|
||||
device=inputs_embeds.device,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
||||
inputs_embeds.device
|
||||
)
|
||||
combined_attention_mask = (
|
||||
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
||||
)
|
||||
|
||||
return combined_attention_mask
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
assert self.pp_config.is_head, "input_ids is only supported on the head stage"
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
assert not self.pp_config.is_head, "inputs_embeds is only supported on the tail stage"
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
|
||||
if past_key_values is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[2]
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
|
||||
if position_ids is None:
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
position_ids = torch.arange(
|
||||
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
||||
)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||
else:
|
||||
position_ids = position_ids.view(-1, seq_length).long()
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
# embed positions
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(
|
||||
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
||||
)
|
||||
attention_mask = self._prepare_decoder_attention_mask(
|
||||
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
for idx in range(self.num_layers):
|
||||
decoder_layer = self.layers[self.layer_start + idx]
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
if self.pp_config.is_tail:
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
|
||||
def load_model(checkpoint):
|
||||
from llama_models import LlamaForCausalLM
|
||||
if 'llama' in checkpoint.lower():
|
||||
model = LlamaForCausalLM.from_pretrained(checkpoint, low_cpu_mem_usage=True, torch_dtype=torch.float16)
|
||||
return model
|
||||
|
||||
from pydantic import BaseModel
|
||||
class BatchTask(BaseModel):
|
||||
batch_id: str
|
||||
request_ids: List[str]
|
||||
max_tokens: int
|
||||
batch_size: int
|
||||
input_len: int
|
||||
# plain_texts: List[str]
|
||||
prompt_lengths: List[int]
|
||||
stopped: bool
|
||||
# input_ids: torch.Tensor
|
||||
# attention_mask: torch.Tensor
|
||||
|
||||
|
||||
def make_attention_mask(prompt_lengths):
|
||||
|
|
@ -257,18 +45,13 @@ class ModelRunner:
|
|||
|
||||
def __init__(self, checkpoint, rank, world_size, low_bit, max_num_seqs):
|
||||
|
||||
import sys
|
||||
self.pp_config = PPConfig(rank, world_size)
|
||||
|
||||
start = time.perf_counter()
|
||||
model = load_model(checkpoint)
|
||||
model = self.load_model(checkpoint, rank, world_size, low_bit)
|
||||
end = time.perf_counter()
|
||||
logger.info(f"Time to load weights: {end - start:.2f}s")
|
||||
from ipex_llm import optimize_model
|
||||
|
||||
model = optimize_model(model, low_bit=low_bit)
|
||||
|
||||
model = model.to(torch.float16).to(f'xpu:{rank}')
|
||||
self.model = model
|
||||
self.rank = rank
|
||||
self.world_size = world_size
|
||||
|
|
@ -295,44 +78,63 @@ class ModelRunner:
|
|||
self.is_finish = {}
|
||||
self.model_name = checkpoint
|
||||
|
||||
self.layer_start = 0
|
||||
|
||||
# def generate(self, input_ids=None, max_tokens=5, attention_mask=None):
|
||||
# times = []
|
||||
# with torch.no_grad():
|
||||
# _input_ids = None
|
||||
# _past_key_values = None
|
||||
# bs = input_ids.shape[0]
|
||||
# output_ids = input_ids.clone()
|
||||
# for i in range(max_tokens):
|
||||
# start = time.perf_counter()
|
||||
# if _input_ids is None:
|
||||
# _input_ids = input_ids
|
||||
# if self.rank == 0:
|
||||
# outputs = self.model(input_ids=_input_ids, attention_mask=attention_mask, past_key_values=_past_key_values, use_cache=True)
|
||||
|
||||
def load_model(self, model_path, my_rank, my_size, low_bit='sym_int4'):
|
||||
device = f"xpu:{my_rank}"
|
||||
from ipex_llm.transformers import AutoModelForCausalLM
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
load_in_low_bit=low_bit,
|
||||
torch_dtype=torch.float16,
|
||||
optimize_model=True,
|
||||
trust_remote_code=True,
|
||||
use_cache=True,
|
||||
pipeline_parallel_stages=my_size).eval()
|
||||
# print(model)
|
||||
|
||||
# config_class = type(model.config).__name__
|
||||
# if config_class == 'ChatGLMConfig':
|
||||
# model.config.num_hidden_layers = model.config.num_layers
|
||||
# nr_slices = my_size
|
||||
# slice_size = (model.config.num_layers + nr_slices - 1) // nr_slices
|
||||
# layer_start = slice_size * my_rank
|
||||
# layer_end = layer_start + min(slice_size, model.config.num_layers - layer_start)
|
||||
|
||||
# for i in range(model.config.num_layers):
|
||||
# if i < layer_start or i >= layer_end:
|
||||
# model.transformer.encoder.layers[i] = Dummy_DecoderLayer()
|
||||
# else:
|
||||
# inputs_embeds = torch.empty(_input_ids.shape + (self.hidden_size,) , device=f'xpu:{self.rank}', dtype=torch.float32)
|
||||
# dist.recv(inputs_embeds, src=self.pre_rank)
|
||||
# outputs = self.model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, past_key_values=_past_key_values, use_cache=True)
|
||||
# pass
|
||||
# # align layer_idx and len(past_key_values), otherwise abnormal output
|
||||
# # model._modules['encoder'].layers[i].self_attention.layer_idx = i - layer_start
|
||||
# # model.transformer.encoder.layers[i].self_attention.layer_idx = i - layer_start
|
||||
|
||||
# if my_rank != 0:
|
||||
# model.transformer.embedding = DummyLayer()
|
||||
# if my_rank != my_size - 1:
|
||||
# model.transformer.output_layer = DummyLayer()
|
||||
|
||||
# if self.rank == self.world_size - 1:
|
||||
# logits = outputs.logits
|
||||
# next_ids = torch.argmax(logits[:, -1:, :], dim=-1)
|
||||
# assert next_ids.shape == (bs, 1)
|
||||
# dist.broadcast(next_ids, src=self.rank)
|
||||
# else:
|
||||
# dist.send(outputs.last_hidden_state, dst=self.next_rank)
|
||||
# next_ids = torch.empty((bs, 1), device=f'xpu:{self.rank}', dtype=torch.int64)
|
||||
# dist.broadcast(next_ids, src=self.world_size - 1)
|
||||
# nr_slices = my_size
|
||||
# slice_size = (model.config.num_hidden_layers + nr_slices - 1) // nr_slices
|
||||
# layer_start = slice_size * my_rank
|
||||
# layer_end = layer_start + min(slice_size, model.config.num_hidden_layers - layer_start)
|
||||
|
||||
# _input_ids = next_ids
|
||||
# output_ids = torch.cat([output_ids, next_ids], dim=-1)
|
||||
# _past_key_values = outputs.past_key_values
|
||||
# end = time.perf_counter()
|
||||
# times.append(end - start)
|
||||
# for i in range(model.config.num_hidden_layers):
|
||||
# if i < layer_start or i >= layer_end:
|
||||
# model._modules['model'].layers[i] = Dummy_DecoderLayer()
|
||||
# else:
|
||||
# # align layer_idx and len(past_key_values), otherwise abnormal output
|
||||
# model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
|
||||
# if my_rank != 0:
|
||||
# model._modules['model'].embed_tokens = DummyLayer()
|
||||
# if my_rank != my_size - 1:
|
||||
# model._modules['model'].norm = DummyLayer()
|
||||
# model._modules['lm_head'] = DummyLayer()
|
||||
|
||||
# if self.rank == 0:
|
||||
# logger.info(f"first token latency: {times[0]}, rest token avg latecy: {np.mean(times[1:])}")
|
||||
# return output_ids
|
||||
# model = model.to(f'xpu:{my_rank}')
|
||||
return model
|
||||
|
||||
|
||||
def model_step(self, input, cur_batch):
|
||||
|
|
@ -341,7 +143,6 @@ class ModelRunner:
|
|||
|
||||
cur_id = cur_batch.batch_id
|
||||
_past_key_values = self.past_key_values_dict.get(cur_id, None)
|
||||
# attention_mask = self.attention_mask_dict[cur_id]
|
||||
attention_mask = make_attention_mask(cur_batch.prompt_lengths)
|
||||
|
||||
if self.rank == 0:
|
||||
|
|
@ -350,18 +151,33 @@ class ModelRunner:
|
|||
else:
|
||||
input_ids = None
|
||||
inputs_embeds = input
|
||||
|
||||
# logger.info(f"{self.rank}, {_past_key_values}")
|
||||
output = self.model(
|
||||
input_ids=input_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=_past_key_values,
|
||||
use_cache=True
|
||||
use_cache=True,
|
||||
output_hidden_states=True,
|
||||
)
|
||||
self.past_key_values_dict[cur_id] = output.past_key_values
|
||||
if not self.pp_config.is_tail:
|
||||
return output.last_hidden_state
|
||||
use_legacy_cache = not isinstance(output.past_key_values, Cache)
|
||||
if use_legacy_cache and self.rank > 0:
|
||||
if output.past_key_values[0] is None:
|
||||
_past_key_values = list(output.past_key_values)
|
||||
slice_size = (self.model.config.num_hidden_layers + self.world_size - 1) // self.world_size
|
||||
layer_start = slice_size * self.rank
|
||||
|
||||
_past_key_values[0] = [torch.empty_like(output.past_key_values[layer_start][0])]
|
||||
_past_key_values = tuple(_past_key_values)
|
||||
else:
|
||||
_past_key_values = output.past_key_values
|
||||
else:
|
||||
_past_key_values = output.past_key_values
|
||||
self.past_key_values_dict[cur_id] = _past_key_values
|
||||
if not self.pp_config.is_tail:
|
||||
return output.hidden_states[-1]
|
||||
else:
|
||||
# logger.info(f"logits: {output.logits.shape}")
|
||||
return output.logits
|
||||
|
||||
|
||||
|
|
@ -376,7 +192,6 @@ class ModelRunner:
|
|||
break
|
||||
|
||||
tmp_result = await self.waiting_requests.get()
|
||||
# logger.info(tmp_result)
|
||||
request_id, prompt_request = tmp_result
|
||||
request_ids.append(request_id)
|
||||
prompt_requests.append(prompt_request)
|
||||
|
|
@ -393,14 +208,10 @@ class ModelRunner:
|
|||
input_len=input_ids.size(1),
|
||||
prompt_lengths=[sum(attention_mask[i,:]) for i in range(input_ids.size(0))],
|
||||
stopped=False,
|
||||
# plain_texts=plain_texts,
|
||||
# input_ids=input_ids,
|
||||
# attention_mask=attention_mask,
|
||||
)
|
||||
|
||||
self.input_ids_dict[new_batch.batch_id] = input_ids
|
||||
self.token_times[new_batch.batch_id] = [time.perf_counter()]
|
||||
# self.attention_mask_dict[new_batch.batch_id] = attention_mask
|
||||
|
||||
return new_batch
|
||||
|
||||
|
|
@ -409,7 +220,6 @@ class ModelRunner:
|
|||
self.input_ids_dict.pop(cur_id, None)
|
||||
self.tokens.pop(cur_id, None)
|
||||
self.token_times.pop(cur_id, None)
|
||||
# self.attention_mask_dict.pop(cur_id, None)
|
||||
self.past_key_values_dict.pop(cur_id, None)
|
||||
# torch.xpu.empty_cache()
|
||||
|
||||
|
|
@ -448,9 +258,7 @@ class ModelRunner:
|
|||
next_ids = next_ids.unsqueeze(0)
|
||||
self.tokens[cur_id].append(next_ids)
|
||||
self.token_times[cur_id].append(time.perf_counter())
|
||||
# self.input_ids_dict[cur_id] += next_ids
|
||||
cur_input = next_ids
|
||||
# cur_batch.input_len += 1
|
||||
cur_batch.input_len = 1
|
||||
cur_batch.prompt_lengths = [x + 1 for x in cur_batch.prompt_lengths]
|
||||
|
||||
|
|
@ -462,9 +270,10 @@ class ModelRunner:
|
|||
if self.streamer.get(request_id, None) is None:
|
||||
self.streamer[request_id] = asyncio.Queue()
|
||||
|
||||
if next_ids[index].int() == tokenizer.eos_token_id:
|
||||
remain = 0
|
||||
self.is_finish[request_id] = True
|
||||
# Currently ignore eos for benchmark
|
||||
# if next_ids[index].int() == tokenizer.eos_token_id:
|
||||
# remain = 0
|
||||
# self.is_finish[request_id] = True
|
||||
|
||||
if self.token_cache.get(request_id, None) is None:
|
||||
self.token_cache[request_id] = []
|
||||
|
|
@ -534,12 +343,6 @@ class ModelRunner:
|
|||
# logger.info(f"rank: {self.rank}, recv: {cur_input.shape}")
|
||||
dist.recv(cur_input, src=self.pre_rank)
|
||||
|
||||
# if self.attention_mask_dict.get(cur_batch.batch_id, None) is None:
|
||||
# self.attention_mask_dict[cur_batch.batch_id] = make_attention_mask(cur_batch.prompt_lengths)
|
||||
|
||||
# if self.rank == 0:
|
||||
# logger.info(f"rank: {self.rank}, {batch_list}")
|
||||
|
||||
output = self.model_step(cur_input, cur_batch)
|
||||
if output is not None and self.rank == self.world_size - 1:
|
||||
output = torch.argmax(output[:, -1:, :], dim=-1)
|
||||
|
|
|
|||
|
|
@ -3,19 +3,16 @@ import torch.nn.parallel
|
|||
import torch.distributed as dist
|
||||
import os
|
||||
|
||||
import ipex_llm
|
||||
from ipex_llm.utils.common import invalidInputError
|
||||
from ipex_llm.transformers import init_pipeline_parallel
|
||||
import oneccl_bindings_for_pytorch
|
||||
import json
|
||||
|
||||
from transformers.utils import logging
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
os.environ['MASTER_ADDR'] = '127.0.0.1'
|
||||
os.environ['MASTER_PORT'] = '29501'
|
||||
init_pipeline_parallel()
|
||||
|
||||
backend = 'ccl'
|
||||
dist.init_process_group(backend)
|
||||
my_rank = dist.get_rank()
|
||||
my_size = dist.get_world_size()
|
||||
device = f"xpu:{my_rank}"
|
||||
|
|
@ -146,7 +143,7 @@ async def completion_stream_generator(local_model, delta_text_queue, request_id)
|
|||
if remain == 0:
|
||||
choice_data = CompletionResponseStreamChoice(
|
||||
index=index,
|
||||
text=None,
|
||||
text="",
|
||||
logprobs=None,
|
||||
finish_reason="length")
|
||||
chunk = CompletionStreamResponse(
|
||||
|
|
@ -171,7 +168,6 @@ async def generator(local_model, delta_text_queue, request_id):
|
|||
break
|
||||
else:
|
||||
await asyncio.sleep(0)
|
||||
# streamer_dict.pop(request_id, None)
|
||||
local_model.streamer.pop(request_id, None)
|
||||
|
||||
|
||||
|
|
@ -282,29 +278,6 @@ async def create_completion(request: CompletionRequest):
|
|||
return result
|
||||
|
||||
|
||||
def generate_text(prompt: List[str], n_predict = 32):
|
||||
while prompt[-1] == "":
|
||||
prompt = prompt[:-1]
|
||||
if isinstance(n_predict, list):
|
||||
n_predict = max(n_predict)
|
||||
|
||||
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
||||
input_ids = inputs.input_ids.to(f'xpu:{local_rank}')
|
||||
print(inputs)
|
||||
attention_mask = inputs.attention_mask.to(f'xpu:{local_rank}')
|
||||
output = local_model.generate(input_ids,
|
||||
max_tokens=n_predict,
|
||||
# attention_mask=attention_mask,
|
||||
# max_new_tokens=n_predict,
|
||||
# min_new_tokens=n_predict,
|
||||
# do_sample=False,
|
||||
# use_cache=True
|
||||
)
|
||||
torch.xpu.synchronize()
|
||||
|
||||
return output
|
||||
|
||||
|
||||
async def process_requests(local_model, result_dict):
|
||||
while True:
|
||||
await asyncio.sleep(0)
|
||||
|
|
|
|||
|
|
@ -14,6 +14,6 @@ export TORCH_LLM_ALLREDUCE=0
|
|||
|
||||
export MODEL_PATH=YOUR_MODEL_PATH
|
||||
export NUM_GPUS=2
|
||||
export BIGDL_QUANTIZE_KV_CACHE=1
|
||||
export IPEX_LLM_QUANTIZE_KV_CACHE=1
|
||||
|
||||
CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS pipeline_serving.py --repo-id-or-model-path $MODEL_PATH --low-bit fp8 --max-num-seqs 4
|
||||
|
|
|
|||
|
|
@ -64,7 +64,9 @@ class Dummy_DecoderLayer(nn.Module):
|
|||
self.input_layernorm = DummyLayer()
|
||||
self.mlp = Dummy_MLPLayer()
|
||||
|
||||
def forward(self, hidden_states, past_key_value=None, use_cache=False, **kwargs):
|
||||
def forward(self, hidden_states, *args, **kwargs):
|
||||
past_key_value = kwargs.get('past_key_value', None)
|
||||
use_cache = kwargs.get('use_cache', False)
|
||||
outputs = (hidden_states,)
|
||||
if use_cache:
|
||||
outputs += (past_key_value,)
|
||||
|
|
|
|||
Loading…
Reference in a new issue