LLM: Refactor Pipeline-Parallel-FastAPI example (#11319)
Initially Refactor for Pipeline-Parallel-FastAPI example
This commit is contained in:
		
							parent
							
								
									34c15d3a10
								
							
						
					
					
						commit
						8ddae22cfb
					
				
					 7 changed files with 147 additions and 705 deletions
				
			
		| 
						 | 
				
			
			@ -22,7 +22,7 @@ pip install mpi4py fastapi uvicorn openai
 | 
			
		|||
pip install gradio # for gradio web UI
 | 
			
		||||
conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
 | 
			
		||||
 | 
			
		||||
pip install transformers==4.31.0 # for llama2 models
 | 
			
		||||
pip install transformers==4.37.0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Run pipeline parallel serving on multiple GPUs
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -30,7 +30,6 @@ def perform_request(session, url, payload, headers):
 | 
			
		|||
    start_time = time.perf_counter()
 | 
			
		||||
    with session.post(url, json=payload, headers=headers, stream=True) as response:
 | 
			
		||||
        response.raise_for_status()
 | 
			
		||||
 | 
			
		||||
        first_token_time = None
 | 
			
		||||
        last_token_time = 0
 | 
			
		||||
        first_token_inference_time = None
 | 
			
		||||
| 
						 | 
				
			
			@ -38,14 +37,22 @@ def perform_request(session, url, payload, headers):
 | 
			
		|||
        next_token_time = []
 | 
			
		||||
        i = 0
 | 
			
		||||
        for line in response.iter_lines():
 | 
			
		||||
 | 
			
		||||
            token_time = time.perf_counter() - start_time
 | 
			
		||||
            if line:
 | 
			
		||||
                data = line.decode("utf-8").strip()
 | 
			
		||||
                data = line.decode('utf-8').strip()
 | 
			
		||||
                if data.startswith('data: '):
 | 
			
		||||
                    data = data[len('data: '):]
 | 
			
		||||
                    i = i + 1
 | 
			
		||||
                    try:
 | 
			
		||||
                        json_data = json.loads(data)
 | 
			
		||||
                    if json_data["message"] is not None:
 | 
			
		||||
                        if 'choices' in json_data and len(json_data['choices']) > 0:
 | 
			
		||||
                            choice = json_data['choices'][0]
 | 
			
		||||
                            if 'finish_reason' in choice and (choice['finish_reason'] == 'length' or choice['finish_reason'] == 'stop'):
 | 
			
		||||
                                if 'first_token_time' in choice and isinstance(choice['first_token_time'], float):
 | 
			
		||||
                                    first_token_inference_time = choice['first_token_time']
 | 
			
		||||
                                if 'rest_token_time' in choice and isinstance(choice['rest_token_time'], float):
 | 
			
		||||
                                    next_token_inference_time = choice['rest_token_time']
 | 
			
		||||
                            else:    
 | 
			
		||||
                                if first_token_time is None:
 | 
			
		||||
                                    first_token_time = token_time
 | 
			
		||||
                                else:
 | 
			
		||||
| 
						 | 
				
			
			@ -76,11 +83,11 @@ def extend_list_to_length(lst, target_length):
 | 
			
		|||
def benchmark(
 | 
			
		||||
    llm_urls,
 | 
			
		||||
    prompt,
 | 
			
		||||
    num_warmup_requests,
 | 
			
		||||
    num_requests,
 | 
			
		||||
    max_concurrent_requests,
 | 
			
		||||
    max_tokens,
 | 
			
		||||
    prompt_length,
 | 
			
		||||
    is_warmup=False,
 | 
			
		||||
):
 | 
			
		||||
 | 
			
		||||
    headers = {"Content-Type": "application/json"}
 | 
			
		||||
| 
						 | 
				
			
			@ -92,6 +99,8 @@ def benchmark(
 | 
			
		|||
    next_token_inference_times = []
 | 
			
		||||
    cur_url_index = 0
 | 
			
		||||
 | 
			
		||||
    num_requests = num_requests + num_warmup_requests
 | 
			
		||||
 | 
			
		||||
    with requests.Session() as session:
 | 
			
		||||
        with ThreadPoolExecutor(max_workers=max_concurrent_requests) as executor:
 | 
			
		||||
            llm_url = llm_urls[cur_url_index]
 | 
			
		||||
| 
						 | 
				
			
			@ -101,8 +110,17 @@ def benchmark(
 | 
			
		|||
            cur_len = len(cur_llm_urls)
 | 
			
		||||
 | 
			
		||||
            payload = {
 | 
			
		||||
                "model": "Meta-Llama-3-8B-Instruct",
 | 
			
		||||
                "prompt": prompt,
 | 
			
		||||
                "n_predict": max_tokens,
 | 
			
		||||
                "max_tokens": max_tokens,
 | 
			
		||||
                "stream": True,
 | 
			
		||||
                # for vllm openai api server
 | 
			
		||||
                "ignore_eos": True,
 | 
			
		||||
                "n": 1,
 | 
			
		||||
                "best_of": 1,
 | 
			
		||||
                "use_beam_search": False,
 | 
			
		||||
                "temperature": 0.0,
 | 
			
		||||
                "top_p": 1.0,
 | 
			
		||||
            }
 | 
			
		||||
            futures = [
 | 
			
		||||
                executor.submit(
 | 
			
		||||
| 
						 | 
				
			
			@ -115,14 +133,13 @@ def benchmark(
 | 
			
		|||
                for index in range(num_requests)
 | 
			
		||||
            ]
 | 
			
		||||
 | 
			
		||||
            start_time = time.perf_counter()
 | 
			
		||||
 | 
			
		||||
            if is_warmup:
 | 
			
		||||
                phase = "Warm Up"
 | 
			
		||||
            else:
 | 
			
		||||
            phase = "Benchmarking"
 | 
			
		||||
 | 
			
		||||
            with tqdm(total=num_requests, desc=phase, unit="req", ncols=100) as pbar:
 | 
			
		||||
                cur_index = 0
 | 
			
		||||
                for future in concurrent.futures.as_completed(futures):
 | 
			
		||||
                    if cur_index == num_warmup_requests:
 | 
			
		||||
                        start_time = time.perf_counter()
 | 
			
		||||
                    try:
 | 
			
		||||
                        (
 | 
			
		||||
                            first_token_latency,
 | 
			
		||||
| 
						 | 
				
			
			@ -131,6 +148,8 @@ def benchmark(
 | 
			
		|||
                            first_token_inference_time,
 | 
			
		||||
                            next_token_inference_time,
 | 
			
		||||
                        ) = future.result()
 | 
			
		||||
                        cur_index = cur_index + 1
 | 
			
		||||
                        if cur_index > num_warmup_requests:
 | 
			
		||||
                            first_token_latencies.append(first_token_latency)
 | 
			
		||||
                            next_token_latencies.append(next_token_latency)
 | 
			
		||||
                            total_responce_times.append(total_responce_time)
 | 
			
		||||
| 
						 | 
				
			
			@ -144,8 +163,6 @@ def benchmark(
 | 
			
		|||
                        print(f"Request failed: {e}")
 | 
			
		||||
                    pbar.update(1)
 | 
			
		||||
 | 
			
		||||
            if is_warmup:
 | 
			
		||||
                return
 | 
			
		||||
            total_time = time.perf_counter() - start_time
 | 
			
		||||
            log_file = f"{max_concurrent_requests}.log"
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -174,9 +191,6 @@ def benchmark(
 | 
			
		|||
                    )
 | 
			
		||||
                    p90_first_token_latency = np.percentile(first_token_latencies, 90)
 | 
			
		||||
                    p95_first_token_latency = np.percentile(first_token_latencies, 95)
 | 
			
		||||
                    # average_first_token_inference_latency = np.mean(
 | 
			
		||||
                    #     first_token_inference_times
 | 
			
		||||
                    # )
 | 
			
		||||
                    print(
 | 
			
		||||
                        f"Average first token latency: {average_first_token_latency * 1000} milliseconds.",
 | 
			
		||||
                        file=file,
 | 
			
		||||
| 
						 | 
				
			
			@ -189,10 +203,6 @@ def benchmark(
 | 
			
		|||
                        f"P95 first token latency: {p95_first_token_latency * 1000} milliseconds.",
 | 
			
		||||
                        file=file,
 | 
			
		||||
                    )
 | 
			
		||||
                    # print(
 | 
			
		||||
                    #     f"Average first token inference latency: {average_first_token_inference_latency * 1000} milliseconds.",
 | 
			
		||||
                    #     file=file,
 | 
			
		||||
                    # )
 | 
			
		||||
                    print(file=file)
 | 
			
		||||
 | 
			
		||||
                if next_token_latencies:
 | 
			
		||||
| 
						 | 
				
			
			@ -201,9 +211,6 @@ def benchmark(
 | 
			
		|||
                    )
 | 
			
		||||
                    p90_next_token_latency = np.percentile(next_token_latencies, 90)
 | 
			
		||||
                    p95_next_token_latency = np.percentile(next_token_latencies, 95)
 | 
			
		||||
                    # average_next_token_inference_latency = np.mean(
 | 
			
		||||
                    #     next_token_inference_times
 | 
			
		||||
                    # )
 | 
			
		||||
                    print(
 | 
			
		||||
                        f"Average next token latency: {average_next_token_latency * 1000} milliseconds.",
 | 
			
		||||
                        file=file,
 | 
			
		||||
| 
						 | 
				
			
			@ -216,14 +223,10 @@ def benchmark(
 | 
			
		|||
                        f"P95 next token latency: {p95_next_token_latency * 1000} milliseconds.",
 | 
			
		||||
                        file=file,
 | 
			
		||||
                    )
 | 
			
		||||
                    # print(
 | 
			
		||||
                    #     f"Average next token inference latency: {average_next_token_inference_latency * 1000} milliseconds.",
 | 
			
		||||
                    #     file=file,
 | 
			
		||||
                    # )
 | 
			
		||||
                    print(file=file)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
LLM_URLS = [f"http://localhost:{PORT}/generate_stream/" for PORT in [8000]]
 | 
			
		||||
LLM_URLS = [f"http://localhost:{PORT}/v1/completions" for PORT in [8000]]
 | 
			
		||||
 | 
			
		||||
parser = argparse.ArgumentParser(description="Set prompt length.")
 | 
			
		||||
parser.add_argument(
 | 
			
		||||
| 
						 | 
				
			
			@ -254,17 +257,6 @@ MAX_TOKENS = args.max_new_tokens
 | 
			
		|||
 | 
			
		||||
for MAX_CONCURRENT_REQUESTS in args.max_concurrent_requests:
 | 
			
		||||
    NUM_WARMUP = 5 * MAX_CONCURRENT_REQUESTS
 | 
			
		||||
    NUM_REQUESTS = 10 * MAX_CONCURRENT_REQUESTS
 | 
			
		||||
    NUM_REQUESTS = 30 * MAX_CONCURRENT_REQUESTS
 | 
			
		||||
 | 
			
		||||
    # warm up
 | 
			
		||||
    benchmark(
 | 
			
		||||
        LLM_URLS,
 | 
			
		||||
        PROMPT,
 | 
			
		||||
        NUM_WARMUP,
 | 
			
		||||
        MAX_CONCURRENT_REQUESTS,
 | 
			
		||||
        MAX_TOKENS,
 | 
			
		||||
        PROMPT_LENGTH,
 | 
			
		||||
        is_warmup=True,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    benchmark(LLM_URLS, PROMPT, NUM_REQUESTS, MAX_CONCURRENT_REQUESTS, MAX_TOKENS, PROMPT_LENGTH)
 | 
			
		||||
    benchmark(LLM_URLS, PROMPT, NUM_WARMUP, NUM_REQUESTS, MAX_CONCURRENT_REQUESTS, MAX_TOKENS, PROMPT_LENGTH)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,328 +0,0 @@
 | 
			
		|||
from transformers.modeling_utils import PreTrainedModel
 | 
			
		||||
from transformers.models.llama.modeling_llama import LlamaConfig, LlamaDecoderLayer, LlamaRMSNorm, LlamaPreTrainedModel
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
 | 
			
		||||
 | 
			
		||||
from torch import nn
 | 
			
		||||
import torch
 | 
			
		||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
 | 
			
		||||
from typing import List, Optional, Tuple, Union, Iterator
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
import numpy as np
 | 
			
		||||
import time
 | 
			
		||||
from transformers import AutoTokenizer, AutoConfig
 | 
			
		||||
import torch.distributed as dist
 | 
			
		||||
from pipeline_models import (
 | 
			
		||||
    _make_causal_mask, _expand_mask, DummyLayer, PPConfig,
 | 
			
		||||
    PipelineBaseModel,
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LlamaModel(LlamaPreTrainedModel):
 | 
			
		||||
    """
 | 
			
		||||
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        config: LlamaConfig
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, config: LlamaConfig):
 | 
			
		||||
        super().__init__(config)
 | 
			
		||||
        self.config = config
 | 
			
		||||
 | 
			
		||||
        # pp modification
 | 
			
		||||
        self.pp_config = PPConfig(pp_rank=dist.get_rank(), pp_world_size=dist.get_world_size())
 | 
			
		||||
        nr_slices = self.pp_config.pp_world_size
 | 
			
		||||
        # self.config.num_hidden_layers = 8
 | 
			
		||||
        slice_size = (self.config.num_hidden_layers + nr_slices -
 | 
			
		||||
                      1) // nr_slices
 | 
			
		||||
        self.layer_start = slice_size * self.pp_config.pp_rank
 | 
			
		||||
        self.layer_end  = self.layer_start + min(slice_size,
 | 
			
		||||
                                    self.config.num_hidden_layers - self.layer_start)
 | 
			
		||||
        self.num_layers = self.layer_end - self.layer_start
 | 
			
		||||
        layers = []
 | 
			
		||||
        for i in range(self.config.num_hidden_layers):
 | 
			
		||||
            if i < self.layer_start or i >= self.layer_end:
 | 
			
		||||
                layers.append(DummyLayer())
 | 
			
		||||
            else:
 | 
			
		||||
                layers.append(LlamaDecoderLayer(config))
 | 
			
		||||
        self.layers = nn.ModuleList(layers)
 | 
			
		||||
 | 
			
		||||
        self.padding_idx = config.pad_token_id
 | 
			
		||||
        self.vocab_size = config.vocab_size
 | 
			
		||||
        if self.pp_config.is_head:
 | 
			
		||||
            self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
 | 
			
		||||
        if self.pp_config.is_tail:
 | 
			
		||||
            self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def get_input_embeddings(self):
 | 
			
		||||
        return self.embed_tokens
 | 
			
		||||
 | 
			
		||||
    def set_input_embeddings(self, value):
 | 
			
		||||
        self.embed_tokens = value
 | 
			
		||||
 | 
			
		||||
    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
 | 
			
		||||
    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
 | 
			
		||||
        # create causal mask
 | 
			
		||||
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
 | 
			
		||||
        combined_attention_mask = None
 | 
			
		||||
        if input_shape[-1] > 1:
 | 
			
		||||
            combined_attention_mask = _make_causal_mask(
 | 
			
		||||
                input_shape,
 | 
			
		||||
                inputs_embeds.dtype,
 | 
			
		||||
                device=inputs_embeds.device,
 | 
			
		||||
                past_key_values_length=past_key_values_length,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
 | 
			
		||||
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
 | 
			
		||||
                inputs_embeds.device
 | 
			
		||||
            )
 | 
			
		||||
            combined_attention_mask = (
 | 
			
		||||
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        return combined_attention_mask
 | 
			
		||||
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        input_ids: torch.LongTensor = None,
 | 
			
		||||
        attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
        position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
        past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
        inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        use_cache: Optional[bool] = None,
 | 
			
		||||
        output_attentions: Optional[bool] = None,
 | 
			
		||||
        output_hidden_states: Optional[bool] = None,
 | 
			
		||||
        return_dict: Optional[bool] = None,
 | 
			
		||||
    ) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
 | 
			
		||||
        output_hidden_states = (
 | 
			
		||||
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
 | 
			
		||||
        )
 | 
			
		||||
        use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
 | 
			
		||||
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
        # retrieve input_ids and inputs_embeds for pp
 | 
			
		||||
        if input_ids is not None and inputs_embeds is not None:
 | 
			
		||||
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
 | 
			
		||||
        elif input_ids is not None:
 | 
			
		||||
            assert self.pp_config.is_head, "input_ids is only supported on the head stage"
 | 
			
		||||
            batch_size, seq_length = input_ids.shape
 | 
			
		||||
        elif inputs_embeds is not None:
 | 
			
		||||
            assert not self.pp_config.is_head, "inputs_embeds is only supported on the tail stage"
 | 
			
		||||
            batch_size, seq_length, _ = inputs_embeds.shape
 | 
			
		||||
        else:
 | 
			
		||||
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
 | 
			
		||||
 | 
			
		||||
        seq_length_with_past = seq_length
 | 
			
		||||
        past_key_values_length = 0
 | 
			
		||||
 | 
			
		||||
        if past_key_values is not None:
 | 
			
		||||
            past_key_values_length = past_key_values[0][0].shape[2]
 | 
			
		||||
            seq_length_with_past = seq_length_with_past + past_key_values_length
 | 
			
		||||
 | 
			
		||||
        if position_ids is None:
 | 
			
		||||
            device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
			
		||||
            position_ids = torch.arange(
 | 
			
		||||
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
 | 
			
		||||
            )
 | 
			
		||||
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
 | 
			
		||||
        else:
 | 
			
		||||
            position_ids = position_ids.view(-1, seq_length).long()
 | 
			
		||||
 | 
			
		||||
        if inputs_embeds is None:
 | 
			
		||||
            inputs_embeds = self.embed_tokens(input_ids)
 | 
			
		||||
        # embed positions
 | 
			
		||||
        if attention_mask is None:
 | 
			
		||||
            attention_mask = torch.ones(
 | 
			
		||||
                (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
 | 
			
		||||
            )
 | 
			
		||||
        attention_mask = self._prepare_decoder_attention_mask(
 | 
			
		||||
            attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        hidden_states = inputs_embeds
 | 
			
		||||
 | 
			
		||||
        # decoder layers
 | 
			
		||||
        all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
        all_self_attns = () if output_attentions else None
 | 
			
		||||
        next_decoder_cache = () if use_cache else None
 | 
			
		||||
 | 
			
		||||
        for idx in range(self.num_layers):
 | 
			
		||||
            decoder_layer = self.layers[self.layer_start + idx]
 | 
			
		||||
            if output_hidden_states:
 | 
			
		||||
                all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
            past_key_value = past_key_values[idx] if past_key_values is not None else None
 | 
			
		||||
 | 
			
		||||
            layer_outputs = decoder_layer(
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask=attention_mask,
 | 
			
		||||
                position_ids=position_ids,
 | 
			
		||||
                past_key_value=past_key_value,
 | 
			
		||||
                output_attentions=output_attentions,
 | 
			
		||||
                use_cache=use_cache,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            hidden_states = layer_outputs[0]
 | 
			
		||||
 | 
			
		||||
            if use_cache:
 | 
			
		||||
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
 | 
			
		||||
 | 
			
		||||
            if output_attentions:
 | 
			
		||||
                all_self_attns += (layer_outputs[1],)
 | 
			
		||||
        
 | 
			
		||||
        if self.pp_config.is_tail:
 | 
			
		||||
            hidden_states = self.norm(hidden_states)
 | 
			
		||||
 | 
			
		||||
        # add hidden states from the last decoder layer
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        next_cache = next_decoder_cache if use_cache else None
 | 
			
		||||
        if not return_dict:
 | 
			
		||||
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
 | 
			
		||||
        return BaseModelOutputWithPast(
 | 
			
		||||
            last_hidden_state=hidden_states,
 | 
			
		||||
            past_key_values=next_cache,
 | 
			
		||||
            hidden_states=all_hidden_states,
 | 
			
		||||
            attentions=all_self_attns,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class LlamaForCausalLM(LlamaPreTrainedModel):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, config: LlamaConfig):
 | 
			
		||||
        super().__init__(config=config)
 | 
			
		||||
        self.config = config
 | 
			
		||||
        self.pp_config = PPConfig(pp_rank=dist.get_rank(), pp_world_size=dist.get_world_size())
 | 
			
		||||
        self.model = LlamaModel(config)
 | 
			
		||||
        self.pretraining_tp = config.pretraining_tp
 | 
			
		||||
        self.vocab_size = config.vocab_size
 | 
			
		||||
        if self.pp_config.is_tail:
 | 
			
		||||
            self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
 | 
			
		||||
 | 
			
		||||
    def get_input_embeddings(self):
 | 
			
		||||
        return self.model.embed_tokens
 | 
			
		||||
 | 
			
		||||
    def set_input_embeddings(self, value):
 | 
			
		||||
        self.model.embed_tokens = value
 | 
			
		||||
 | 
			
		||||
    def get_output_embeddings(self):
 | 
			
		||||
        return self.lm_head
 | 
			
		||||
 | 
			
		||||
    def set_output_embeddings(self, new_embeddings):
 | 
			
		||||
        self.lm_head = new_embeddings
 | 
			
		||||
 | 
			
		||||
    def set_decoder(self, decoder):
 | 
			
		||||
        self.model = decoder
 | 
			
		||||
 | 
			
		||||
    def get_decoder(self):
 | 
			
		||||
        return self.model
 | 
			
		||||
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        input_ids: torch.LongTensor = None,
 | 
			
		||||
        attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
        position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
        past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
        inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        labels: Optional[torch.LongTensor] = None,
 | 
			
		||||
        use_cache: Optional[bool] = None,
 | 
			
		||||
        output_attentions: Optional[bool] = None,
 | 
			
		||||
        output_hidden_states: Optional[bool] = None,
 | 
			
		||||
        return_dict: Optional[bool] = None,
 | 
			
		||||
    ) -> Union[Tuple, CausalLMOutputWithPast]:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
 | 
			
		||||
        output_hidden_states = (
 | 
			
		||||
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
 | 
			
		||||
        )
 | 
			
		||||
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
 | 
			
		||||
        outputs = self.model(
 | 
			
		||||
            input_ids=input_ids,
 | 
			
		||||
            attention_mask=attention_mask,
 | 
			
		||||
            position_ids=position_ids,
 | 
			
		||||
            past_key_values=past_key_values,
 | 
			
		||||
            inputs_embeds=inputs_embeds,
 | 
			
		||||
            use_cache=use_cache,
 | 
			
		||||
            output_attentions=output_attentions,
 | 
			
		||||
            output_hidden_states=output_hidden_states,
 | 
			
		||||
            return_dict=return_dict,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        if self.pp_config.is_tail:
 | 
			
		||||
            hidden_states = outputs[0]
 | 
			
		||||
            logits = self.lm_head(hidden_states)
 | 
			
		||||
 | 
			
		||||
            loss = None
 | 
			
		||||
            if labels is not None:
 | 
			
		||||
                # Shift so that tokens < n predict n
 | 
			
		||||
                shift_logits = logits[..., :-1, :].contiguous()
 | 
			
		||||
                shift_labels = labels[..., 1:].contiguous()
 | 
			
		||||
                # Flatten the tokens
 | 
			
		||||
                loss_fct = CrossEntropyLoss()
 | 
			
		||||
                shift_logits = shift_logits.view(-1, self.config.vocab_size)
 | 
			
		||||
                shift_labels = shift_labels.view(-1)
 | 
			
		||||
                # Enable model parallelism
 | 
			
		||||
                shift_labels = shift_labels.to(shift_logits.device)
 | 
			
		||||
                loss = loss_fct(shift_logits, shift_labels)
 | 
			
		||||
 | 
			
		||||
            if not return_dict:
 | 
			
		||||
                output = (logits,) + outputs[1:]
 | 
			
		||||
                return (loss,) + output if loss is not None else output
 | 
			
		||||
 | 
			
		||||
            return CausalLMOutputWithPast(
 | 
			
		||||
                loss=loss,
 | 
			
		||||
                logits=logits,
 | 
			
		||||
                past_key_values=outputs.past_key_values,
 | 
			
		||||
                hidden_states=outputs.hidden_states,
 | 
			
		||||
                attentions=outputs.attentions,
 | 
			
		||||
            )
 | 
			
		||||
        return outputs
 | 
			
		||||
 | 
			
		||||
    def prepare_inputs_for_generation(
 | 
			
		||||
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
 | 
			
		||||
    ):
 | 
			
		||||
        if past_key_values:
 | 
			
		||||
            input_ids = input_ids[:, -1:]
 | 
			
		||||
 | 
			
		||||
        position_ids = kwargs.get("position_ids", None)
 | 
			
		||||
        if attention_mask is not None and position_ids is None:
 | 
			
		||||
            # create position_ids on the fly for batch generation
 | 
			
		||||
            position_ids = attention_mask.long().cumsum(-1) - 1
 | 
			
		||||
            position_ids.masked_fill_(attention_mask == 0, 1)
 | 
			
		||||
            if past_key_values:
 | 
			
		||||
                position_ids = position_ids[:, -1].unsqueeze(-1)
 | 
			
		||||
 | 
			
		||||
        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
 | 
			
		||||
        if inputs_embeds is not None and past_key_values is None:
 | 
			
		||||
            model_inputs = {"inputs_embeds": inputs_embeds}
 | 
			
		||||
        else:
 | 
			
		||||
            model_inputs = {"input_ids": input_ids}
 | 
			
		||||
 | 
			
		||||
        model_inputs.update(
 | 
			
		||||
            {
 | 
			
		||||
                "position_ids": position_ids,
 | 
			
		||||
                "past_key_values": past_key_values,
 | 
			
		||||
                "use_cache": kwargs.get("use_cache"),
 | 
			
		||||
                "attention_mask": attention_mask,
 | 
			
		||||
            }
 | 
			
		||||
        )
 | 
			
		||||
        return model_inputs
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def _reorder_cache(past_key_values, beam_idx):
 | 
			
		||||
        reordered_past = ()
 | 
			
		||||
        for layer_past in past_key_values:
 | 
			
		||||
            reordered_past += (
 | 
			
		||||
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
 | 
			
		||||
            )
 | 
			
		||||
        return reordered_past
 | 
			
		||||
| 
						 | 
				
			
			@ -1,15 +1,15 @@
 | 
			
		|||
from torch import nn
 | 
			
		||||
import torch
 | 
			
		||||
import torch.distributed as dist
 | 
			
		||||
 | 
			
		||||
from typing import List, Optional, Tuple, Union, Iterator
 | 
			
		||||
import time
 | 
			
		||||
from transformers import AutoTokenizer, AutoConfig
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import asyncio, uuid
 | 
			
		||||
import threading
 | 
			
		||||
from pydantic import BaseModel
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -23,227 +23,15 @@ class PPConfig:
 | 
			
		|||
        self.is_head = self.pp_rank == 0
 | 
			
		||||
        self.is_tail = self.pp_rank == self.pp_world_size - 1
 | 
			
		||||
 | 
			
		||||
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
 | 
			
		||||
def _make_causal_mask(
 | 
			
		||||
    input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    Make causal mask used for bi-directional self-attention.
 | 
			
		||||
    """
 | 
			
		||||
    bsz, tgt_len = input_ids_shape
 | 
			
		||||
    mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
 | 
			
		||||
    mask_cond = torch.arange(mask.size(-1), device=device)
 | 
			
		||||
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
 | 
			
		||||
    mask = mask.to(dtype)
 | 
			
		||||
 | 
			
		||||
    if past_key_values_length > 0:
 | 
			
		||||
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
 | 
			
		||||
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
 | 
			
		||||
 | 
			
		||||
# Copied from transformers.models.bart.modeling_bart._expand_mask
 | 
			
		||||
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
 | 
			
		||||
    """
 | 
			
		||||
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
 | 
			
		||||
    """
 | 
			
		||||
    bsz, src_len = mask.size()
 | 
			
		||||
    tgt_len = tgt_len if tgt_len is not None else src_len
 | 
			
		||||
 | 
			
		||||
    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
 | 
			
		||||
 | 
			
		||||
    inverted_mask = 1.0 - expanded_mask
 | 
			
		||||
 | 
			
		||||
    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
 | 
			
		||||
    # create causal mask
 | 
			
		||||
    # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
 | 
			
		||||
    combined_attention_mask = None
 | 
			
		||||
    if input_shape[-1] > 1:
 | 
			
		||||
        combined_attention_mask = _make_causal_mask(
 | 
			
		||||
            input_shape,
 | 
			
		||||
            inputs_embeds.dtype,
 | 
			
		||||
            device=inputs_embeds.device,
 | 
			
		||||
            past_key_values_length=past_key_values_length,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    if attention_mask is not None:
 | 
			
		||||
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
 | 
			
		||||
        expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
 | 
			
		||||
            inputs_embeds.device
 | 
			
		||||
        )
 | 
			
		||||
        combined_attention_mask = (
 | 
			
		||||
            expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    return combined_attention_mask
 | 
			
		||||
 | 
			
		||||
class DummyLayer(nn.Module):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class PipelineBaseModel(nn.Module):
 | 
			
		||||
    def __init__(self, config):
 | 
			
		||||
        self.pp_config = PPConfig(pp_rank=dist.get_rank(), pp_world_size=dist.get_world_size())
 | 
			
		||||
        nr_slices = self.pp_config.pp_world_size
 | 
			
		||||
        # self.config.num_hidden_layers = 8
 | 
			
		||||
        slice_size = (self.config.num_hidden_layers + nr_slices -
 | 
			
		||||
                      1) // nr_slices
 | 
			
		||||
        self.layer_start = slice_size * self.pp_config.pp_rank
 | 
			
		||||
        self.layer_end  = self.layer_start + min(slice_size,
 | 
			
		||||
                                    self.config.num_hidden_layers - self.layer_start)
 | 
			
		||||
        self.num_layers = self.layer_end - self.layer_start
 | 
			
		||||
 | 
			
		||||
    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
 | 
			
		||||
    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
 | 
			
		||||
        # create causal mask
 | 
			
		||||
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
 | 
			
		||||
        combined_attention_mask = None
 | 
			
		||||
        if input_shape[-1] > 1:
 | 
			
		||||
            combined_attention_mask = _make_causal_mask(
 | 
			
		||||
                input_shape,
 | 
			
		||||
                inputs_embeds.dtype,
 | 
			
		||||
                device=inputs_embeds.device,
 | 
			
		||||
                past_key_values_length=past_key_values_length,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
 | 
			
		||||
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
 | 
			
		||||
                inputs_embeds.device
 | 
			
		||||
            )
 | 
			
		||||
            combined_attention_mask = (
 | 
			
		||||
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        return combined_attention_mask
 | 
			
		||||
    
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        input_ids: torch.LongTensor = None,
 | 
			
		||||
        attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
        position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
        past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
        inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
        use_cache: Optional[bool] = None,
 | 
			
		||||
        output_attentions: Optional[bool] = None,
 | 
			
		||||
        output_hidden_states: Optional[bool] = None,
 | 
			
		||||
        return_dict: Optional[bool] = None,
 | 
			
		||||
    ) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
 | 
			
		||||
        output_hidden_states = (
 | 
			
		||||
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
 | 
			
		||||
        )
 | 
			
		||||
        use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
 | 
			
		||||
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
        # retrieve input_ids and inputs_embeds
 | 
			
		||||
        if input_ids is not None and inputs_embeds is not None:
 | 
			
		||||
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
 | 
			
		||||
        elif input_ids is not None:
 | 
			
		||||
            assert self.pp_config.is_head, "input_ids is only supported on the head stage"
 | 
			
		||||
            batch_size, seq_length = input_ids.shape
 | 
			
		||||
        elif inputs_embeds is not None:
 | 
			
		||||
            assert not self.pp_config.is_head, "inputs_embeds is only supported on the tail stage"
 | 
			
		||||
            batch_size, seq_length, _ = inputs_embeds.shape
 | 
			
		||||
        else:
 | 
			
		||||
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
 | 
			
		||||
 | 
			
		||||
        seq_length_with_past = seq_length
 | 
			
		||||
        past_key_values_length = 0
 | 
			
		||||
 | 
			
		||||
        if past_key_values is not None:
 | 
			
		||||
            past_key_values_length = past_key_values[0][0].shape[2]
 | 
			
		||||
            seq_length_with_past = seq_length_with_past + past_key_values_length
 | 
			
		||||
 | 
			
		||||
        if position_ids is None:
 | 
			
		||||
            device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
			
		||||
            position_ids = torch.arange(
 | 
			
		||||
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
 | 
			
		||||
            )
 | 
			
		||||
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
 | 
			
		||||
        else:
 | 
			
		||||
            position_ids = position_ids.view(-1, seq_length).long()
 | 
			
		||||
 | 
			
		||||
        if inputs_embeds is None:
 | 
			
		||||
            inputs_embeds = self.embed_tokens(input_ids)
 | 
			
		||||
        # embed positions
 | 
			
		||||
        if attention_mask is None:
 | 
			
		||||
            attention_mask = torch.ones(
 | 
			
		||||
                (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
 | 
			
		||||
            )
 | 
			
		||||
        attention_mask = self._prepare_decoder_attention_mask(
 | 
			
		||||
            attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        hidden_states = inputs_embeds
 | 
			
		||||
 | 
			
		||||
        # decoder layers
 | 
			
		||||
        all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
        all_self_attns = () if output_attentions else None
 | 
			
		||||
        next_decoder_cache = () if use_cache else None
 | 
			
		||||
 | 
			
		||||
        for idx in range(self.num_layers):
 | 
			
		||||
            decoder_layer = self.layers[self.layer_start + idx]
 | 
			
		||||
            if output_hidden_states:
 | 
			
		||||
                all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
            past_key_value = past_key_values[idx] if past_key_values is not None else None
 | 
			
		||||
 | 
			
		||||
            layer_outputs = decoder_layer(
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask=attention_mask,
 | 
			
		||||
                position_ids=position_ids,
 | 
			
		||||
                past_key_value=past_key_value,
 | 
			
		||||
                output_attentions=output_attentions,
 | 
			
		||||
                use_cache=use_cache,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            hidden_states = layer_outputs[0]
 | 
			
		||||
 | 
			
		||||
            if use_cache:
 | 
			
		||||
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
 | 
			
		||||
 | 
			
		||||
            if output_attentions:
 | 
			
		||||
                all_self_attns += (layer_outputs[1],)
 | 
			
		||||
        
 | 
			
		||||
        if self.pp_config.is_tail:
 | 
			
		||||
            hidden_states = self.norm(hidden_states)
 | 
			
		||||
 | 
			
		||||
        # add hidden states from the last decoder layer
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        next_cache = next_decoder_cache if use_cache else None
 | 
			
		||||
        if not return_dict:
 | 
			
		||||
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
 | 
			
		||||
        return BaseModelOutputWithPast(
 | 
			
		||||
            last_hidden_state=hidden_states,
 | 
			
		||||
            past_key_values=next_cache,
 | 
			
		||||
            hidden_states=all_hidden_states,
 | 
			
		||||
            attentions=all_self_attns,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def load_model(checkpoint):
 | 
			
		||||
    from llama_models import LlamaForCausalLM
 | 
			
		||||
    if 'llama' in checkpoint.lower():
 | 
			
		||||
        model = LlamaForCausalLM.from_pretrained(checkpoint, low_cpu_mem_usage=True, torch_dtype=torch.float16)
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
from pydantic import BaseModel
 | 
			
		||||
class BatchTask(BaseModel):
 | 
			
		||||
    batch_id: str
 | 
			
		||||
    request_ids: List[str]
 | 
			
		||||
    max_tokens: int
 | 
			
		||||
    batch_size: int
 | 
			
		||||
    input_len: int
 | 
			
		||||
    # plain_texts: List[str]
 | 
			
		||||
    prompt_lengths: List[int]
 | 
			
		||||
    stopped: bool
 | 
			
		||||
    # input_ids: torch.Tensor
 | 
			
		||||
    # attention_mask: torch.Tensor
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def make_attention_mask(prompt_lengths):
 | 
			
		||||
| 
						 | 
				
			
			@ -257,18 +45,13 @@ class ModelRunner:
 | 
			
		|||
    
 | 
			
		||||
    def __init__(self, checkpoint, rank, world_size, low_bit, max_num_seqs):
 | 
			
		||||
 | 
			
		||||
        import sys
 | 
			
		||||
        self.pp_config = PPConfig(rank, world_size)
 | 
			
		||||
        
 | 
			
		||||
        start = time.perf_counter()
 | 
			
		||||
        model = load_model(checkpoint)
 | 
			
		||||
        model = self.load_model(checkpoint, rank, world_size, low_bit)
 | 
			
		||||
        end = time.perf_counter()
 | 
			
		||||
        logger.info(f"Time to load weights: {end - start:.2f}s")
 | 
			
		||||
        from ipex_llm import optimize_model
 | 
			
		||||
 | 
			
		||||
        model = optimize_model(model, low_bit=low_bit)
 | 
			
		||||
        
 | 
			
		||||
        model = model.to(torch.float16).to(f'xpu:{rank}')
 | 
			
		||||
        self.model = model
 | 
			
		||||
        self.rank = rank
 | 
			
		||||
        self.world_size = world_size
 | 
			
		||||
| 
						 | 
				
			
			@ -295,44 +78,63 @@ class ModelRunner:
 | 
			
		|||
        self.is_finish = {}
 | 
			
		||||
        self.model_name = checkpoint
 | 
			
		||||
 | 
			
		||||
        self.layer_start = 0
 | 
			
		||||
 | 
			
		||||
    # def generate(self, input_ids=None, max_tokens=5, attention_mask=None):
 | 
			
		||||
    #     times = []
 | 
			
		||||
    #     with torch.no_grad():
 | 
			
		||||
    #         _input_ids = None
 | 
			
		||||
    #         _past_key_values = None
 | 
			
		||||
    #         bs = input_ids.shape[0]
 | 
			
		||||
    #         output_ids = input_ids.clone()
 | 
			
		||||
    #         for i in range(max_tokens):
 | 
			
		||||
    #             start = time.perf_counter()
 | 
			
		||||
    #             if _input_ids is None:
 | 
			
		||||
    #                 _input_ids = input_ids
 | 
			
		||||
    #             if self.rank == 0:
 | 
			
		||||
    #                 outputs = self.model(input_ids=_input_ids, attention_mask=attention_mask, past_key_values=_past_key_values, use_cache=True)
 | 
			
		||||
 | 
			
		||||
    def load_model(self, model_path, my_rank, my_size, low_bit='sym_int4'):
 | 
			
		||||
        device = f"xpu:{my_rank}"
 | 
			
		||||
        from ipex_llm.transformers import AutoModelForCausalLM
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
			
		||||
                                                    load_in_low_bit=low_bit,
 | 
			
		||||
                                                    torch_dtype=torch.float16,
 | 
			
		||||
                                                    optimize_model=True,
 | 
			
		||||
                                                    trust_remote_code=True,
 | 
			
		||||
                                                    use_cache=True,
 | 
			
		||||
                                                    pipeline_parallel_stages=my_size).eval()
 | 
			
		||||
        # print(model)
 | 
			
		||||
 | 
			
		||||
        # config_class = type(model.config).__name__
 | 
			
		||||
        # if config_class == 'ChatGLMConfig':
 | 
			
		||||
        #     model.config.num_hidden_layers = model.config.num_layers
 | 
			
		||||
        #     nr_slices = my_size
 | 
			
		||||
        #     slice_size = (model.config.num_layers + nr_slices - 1) // nr_slices
 | 
			
		||||
        #     layer_start = slice_size * my_rank
 | 
			
		||||
        #     layer_end  = layer_start + min(slice_size, model.config.num_layers - layer_start)
 | 
			
		||||
 | 
			
		||||
        #     for i in range(model.config.num_layers):
 | 
			
		||||
        #         if i < layer_start or i >= layer_end:
 | 
			
		||||
        #             model.transformer.encoder.layers[i] = Dummy_DecoderLayer()
 | 
			
		||||
        #         else:
 | 
			
		||||
    #                 inputs_embeds = torch.empty(_input_ids.shape + (self.hidden_size,) , device=f'xpu:{self.rank}', dtype=torch.float32)
 | 
			
		||||
    #                 dist.recv(inputs_embeds, src=self.pre_rank)
 | 
			
		||||
    #                 outputs = self.model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, past_key_values=_past_key_values, use_cache=True)
 | 
			
		||||
        #             pass
 | 
			
		||||
        #             # align layer_idx and len(past_key_values), otherwise abnormal output
 | 
			
		||||
        #             # model._modules['encoder'].layers[i].self_attention.layer_idx = i - layer_start
 | 
			
		||||
        #             # model.transformer.encoder.layers[i].self_attention.layer_idx = i - layer_start
 | 
			
		||||
 | 
			
		||||
        #         if my_rank != 0:
 | 
			
		||||
        #             model.transformer.embedding = DummyLayer()
 | 
			
		||||
        #         if my_rank != my_size - 1:
 | 
			
		||||
        #             model.transformer.output_layer = DummyLayer()
 | 
			
		||||
                    
 | 
			
		||||
    #             if self.rank == self.world_size - 1:
 | 
			
		||||
    #                 logits = outputs.logits
 | 
			
		||||
    #                 next_ids = torch.argmax(logits[:, -1:, :], dim=-1)
 | 
			
		||||
    #                 assert next_ids.shape == (bs, 1)
 | 
			
		||||
    #                 dist.broadcast(next_ids, src=self.rank)
 | 
			
		||||
        # else:
 | 
			
		||||
    #                 dist.send(outputs.last_hidden_state, dst=self.next_rank)
 | 
			
		||||
    #                 next_ids = torch.empty((bs, 1), device=f'xpu:{self.rank}', dtype=torch.int64)
 | 
			
		||||
    #                 dist.broadcast(next_ids, src=self.world_size - 1)
 | 
			
		||||
        #     nr_slices = my_size
 | 
			
		||||
        #     slice_size = (model.config.num_hidden_layers + nr_slices - 1) // nr_slices
 | 
			
		||||
        #     layer_start = slice_size * my_rank
 | 
			
		||||
        #     layer_end  = layer_start + min(slice_size, model.config.num_hidden_layers - layer_start)
 | 
			
		||||
 | 
			
		||||
    #             _input_ids = next_ids
 | 
			
		||||
    #             output_ids = torch.cat([output_ids, next_ids], dim=-1)
 | 
			
		||||
    #             _past_key_values = outputs.past_key_values
 | 
			
		||||
    #             end = time.perf_counter()
 | 
			
		||||
    #             times.append(end - start)
 | 
			
		||||
        #     for i in range(model.config.num_hidden_layers):
 | 
			
		||||
        #         if i < layer_start or i >= layer_end:
 | 
			
		||||
        #             model._modules['model'].layers[i] = Dummy_DecoderLayer()
 | 
			
		||||
        #         else:
 | 
			
		||||
        #             # align layer_idx and len(past_key_values), otherwise abnormal output
 | 
			
		||||
        #             model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start
 | 
			
		||||
        #     if my_rank != 0:
 | 
			
		||||
        #         model._modules['model'].embed_tokens = DummyLayer()
 | 
			
		||||
        #     if my_rank != my_size - 1:
 | 
			
		||||
        #         model._modules['model'].norm = DummyLayer()
 | 
			
		||||
        #         model._modules['lm_head'] = DummyLayer()
 | 
			
		||||
 | 
			
		||||
    #     if self.rank == 0:
 | 
			
		||||
    #         logger.info(f"first token latency: {times[0]}, rest token avg latecy: {np.mean(times[1:])}")
 | 
			
		||||
    #     return output_ids
 | 
			
		||||
        # model = model.to(f'xpu:{my_rank}')
 | 
			
		||||
        return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def model_step(self, input, cur_batch):
 | 
			
		||||
| 
						 | 
				
			
			@ -341,7 +143,6 @@ class ModelRunner:
 | 
			
		|||
        
 | 
			
		||||
        cur_id = cur_batch.batch_id
 | 
			
		||||
        _past_key_values = self.past_key_values_dict.get(cur_id, None)
 | 
			
		||||
        # attention_mask = self.attention_mask_dict[cur_id]
 | 
			
		||||
        attention_mask = make_attention_mask(cur_batch.prompt_lengths)
 | 
			
		||||
 | 
			
		||||
        if self.rank == 0:
 | 
			
		||||
| 
						 | 
				
			
			@ -350,18 +151,33 @@ class ModelRunner:
 | 
			
		|||
        else:
 | 
			
		||||
            input_ids = None
 | 
			
		||||
            inputs_embeds = input
 | 
			
		||||
        
 | 
			
		||||
        # logger.info(f"{self.rank}, {_past_key_values}")
 | 
			
		||||
        output = self.model(
 | 
			
		||||
            input_ids=input_ids, 
 | 
			
		||||
            inputs_embeds=inputs_embeds,
 | 
			
		||||
            attention_mask=attention_mask, 
 | 
			
		||||
            past_key_values=_past_key_values,
 | 
			
		||||
            use_cache=True
 | 
			
		||||
            use_cache=True,
 | 
			
		||||
            output_hidden_states=True,
 | 
			
		||||
        )
 | 
			
		||||
        self.past_key_values_dict[cur_id] = output.past_key_values
 | 
			
		||||
        if not self.pp_config.is_tail:
 | 
			
		||||
            return output.last_hidden_state
 | 
			
		||||
        use_legacy_cache = not isinstance(output.past_key_values, Cache)
 | 
			
		||||
        if use_legacy_cache and self.rank > 0:
 | 
			
		||||
            if output.past_key_values[0] is None:
 | 
			
		||||
                _past_key_values = list(output.past_key_values)
 | 
			
		||||
                slice_size = (self.model.config.num_hidden_layers + self.world_size - 1) // self.world_size
 | 
			
		||||
                layer_start = slice_size * self.rank
 | 
			
		||||
 | 
			
		||||
                _past_key_values[0] = [torch.empty_like(output.past_key_values[layer_start][0])]
 | 
			
		||||
                _past_key_values = tuple(_past_key_values)
 | 
			
		||||
            else:
 | 
			
		||||
                _past_key_values = output.past_key_values
 | 
			
		||||
        else:
 | 
			
		||||
            _past_key_values = output.past_key_values
 | 
			
		||||
        self.past_key_values_dict[cur_id] = _past_key_values
 | 
			
		||||
        if not self.pp_config.is_tail:
 | 
			
		||||
            return output.hidden_states[-1]
 | 
			
		||||
        else:
 | 
			
		||||
            # logger.info(f"logits: {output.logits.shape}")
 | 
			
		||||
            return output.logits
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
| 
						 | 
				
			
			@ -376,7 +192,6 @@ class ModelRunner:
 | 
			
		|||
                break
 | 
			
		||||
            
 | 
			
		||||
            tmp_result = await self.waiting_requests.get()
 | 
			
		||||
            # logger.info(tmp_result)
 | 
			
		||||
            request_id, prompt_request = tmp_result
 | 
			
		||||
            request_ids.append(request_id)
 | 
			
		||||
            prompt_requests.append(prompt_request)
 | 
			
		||||
| 
						 | 
				
			
			@ -393,14 +208,10 @@ class ModelRunner:
 | 
			
		|||
            input_len=input_ids.size(1),
 | 
			
		||||
            prompt_lengths=[sum(attention_mask[i,:]) for i in range(input_ids.size(0))],
 | 
			
		||||
            stopped=False,
 | 
			
		||||
            # plain_texts=plain_texts,
 | 
			
		||||
            # input_ids=input_ids,
 | 
			
		||||
            # attention_mask=attention_mask,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        self.input_ids_dict[new_batch.batch_id] = input_ids
 | 
			
		||||
        self.token_times[new_batch.batch_id] = [time.perf_counter()]
 | 
			
		||||
        # self.attention_mask_dict[new_batch.batch_id] = attention_mask
 | 
			
		||||
 | 
			
		||||
        return new_batch
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -409,7 +220,6 @@ class ModelRunner:
 | 
			
		|||
        self.input_ids_dict.pop(cur_id, None)
 | 
			
		||||
        self.tokens.pop(cur_id, None)
 | 
			
		||||
        self.token_times.pop(cur_id, None)
 | 
			
		||||
        # self.attention_mask_dict.pop(cur_id, None)
 | 
			
		||||
        self.past_key_values_dict.pop(cur_id, None)
 | 
			
		||||
        # torch.xpu.empty_cache()
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -448,9 +258,7 @@ class ModelRunner:
 | 
			
		|||
                    next_ids = next_ids.unsqueeze(0)
 | 
			
		||||
                self.tokens[cur_id].append(next_ids)
 | 
			
		||||
                self.token_times[cur_id].append(time.perf_counter())
 | 
			
		||||
                # self.input_ids_dict[cur_id] += next_ids
 | 
			
		||||
                cur_input = next_ids
 | 
			
		||||
                # cur_batch.input_len += 1
 | 
			
		||||
                cur_batch.input_len = 1
 | 
			
		||||
                cur_batch.prompt_lengths = [x + 1 for x in cur_batch.prompt_lengths]
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -462,9 +270,10 @@ class ModelRunner:
 | 
			
		|||
                        if self.streamer.get(request_id, None) is None:
 | 
			
		||||
                            self.streamer[request_id] = asyncio.Queue()
 | 
			
		||||
                            
 | 
			
		||||
                        if next_ids[index].int() == tokenizer.eos_token_id:
 | 
			
		||||
                            remain = 0
 | 
			
		||||
                            self.is_finish[request_id] = True
 | 
			
		||||
                        # Currently ignore eos for benchmark
 | 
			
		||||
                        # if next_ids[index].int() == tokenizer.eos_token_id:
 | 
			
		||||
                        #     remain = 0
 | 
			
		||||
                        #     self.is_finish[request_id] = True
 | 
			
		||||
 | 
			
		||||
                        if self.token_cache.get(request_id, None) is None:
 | 
			
		||||
                            self.token_cache[request_id] = []
 | 
			
		||||
| 
						 | 
				
			
			@ -534,12 +343,6 @@ class ModelRunner:
 | 
			
		|||
                    # logger.info(f"rank: {self.rank}, recv: {cur_input.shape}")
 | 
			
		||||
                    dist.recv(cur_input, src=self.pre_rank)
 | 
			
		||||
        
 | 
			
		||||
                # if self.attention_mask_dict.get(cur_batch.batch_id, None) is None:
 | 
			
		||||
                #     self.attention_mask_dict[cur_batch.batch_id] = make_attention_mask(cur_batch.prompt_lengths)
 | 
			
		||||
            
 | 
			
		||||
        # if self.rank == 0:
 | 
			
		||||
        #     logger.info(f"rank: {self.rank}, {batch_list}")
 | 
			
		||||
        
 | 
			
		||||
        output = self.model_step(cur_input, cur_batch)
 | 
			
		||||
        if output is not None and self.rank == self.world_size - 1:
 | 
			
		||||
            output = torch.argmax(output[:, -1:, :], dim=-1)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -3,19 +3,16 @@ import torch.nn.parallel
 | 
			
		|||
import torch.distributed as dist
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
import ipex_llm
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
from ipex_llm.transformers import init_pipeline_parallel
 | 
			
		||||
import oneccl_bindings_for_pytorch
 | 
			
		||||
import json
 | 
			
		||||
 | 
			
		||||
from transformers.utils import logging
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
os.environ['MASTER_ADDR'] = '127.0.0.1'
 | 
			
		||||
os.environ['MASTER_PORT'] = '29501'
 | 
			
		||||
init_pipeline_parallel()
 | 
			
		||||
 | 
			
		||||
backend = 'ccl'
 | 
			
		||||
dist.init_process_group(backend)
 | 
			
		||||
my_rank = dist.get_rank()
 | 
			
		||||
my_size = dist.get_world_size()
 | 
			
		||||
device = f"xpu:{my_rank}"
 | 
			
		||||
| 
						 | 
				
			
			@ -146,7 +143,7 @@ async def completion_stream_generator(local_model, delta_text_queue, request_id)
 | 
			
		|||
            if remain == 0:
 | 
			
		||||
                choice_data = CompletionResponseStreamChoice(
 | 
			
		||||
                                index=index,
 | 
			
		||||
                                text=None,
 | 
			
		||||
                                text="",
 | 
			
		||||
                                logprobs=None,
 | 
			
		||||
                                finish_reason="length")
 | 
			
		||||
                chunk = CompletionStreamResponse(
 | 
			
		||||
| 
						 | 
				
			
			@ -171,7 +168,6 @@ async def generator(local_model, delta_text_queue, request_id):
 | 
			
		|||
                break
 | 
			
		||||
        else:
 | 
			
		||||
            await asyncio.sleep(0)
 | 
			
		||||
    # streamer_dict.pop(request_id, None)
 | 
			
		||||
    local_model.streamer.pop(request_id, None)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -282,29 +278,6 @@ async def create_completion(request: CompletionRequest):
 | 
			
		|||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def generate_text(prompt: List[str], n_predict = 32):
 | 
			
		||||
    while prompt[-1] == "":
 | 
			
		||||
        prompt = prompt[:-1]
 | 
			
		||||
    if isinstance(n_predict, list):
 | 
			
		||||
        n_predict = max(n_predict)
 | 
			
		||||
        
 | 
			
		||||
    inputs = tokenizer(prompt, return_tensors="pt", padding=True)
 | 
			
		||||
    input_ids = inputs.input_ids.to(f'xpu:{local_rank}')
 | 
			
		||||
    print(inputs)
 | 
			
		||||
    attention_mask = inputs.attention_mask.to(f'xpu:{local_rank}')
 | 
			
		||||
    output = local_model.generate(input_ids,
 | 
			
		||||
                                  max_tokens=n_predict,
 | 
			
		||||
                            # attention_mask=attention_mask,
 | 
			
		||||
                            # max_new_tokens=n_predict,
 | 
			
		||||
                            # min_new_tokens=n_predict,
 | 
			
		||||
                            # do_sample=False,
 | 
			
		||||
                            # use_cache=True
 | 
			
		||||
                            )
 | 
			
		||||
    torch.xpu.synchronize()
 | 
			
		||||
 | 
			
		||||
    return output
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
async def process_requests(local_model, result_dict):
 | 
			
		||||
    while True:
 | 
			
		||||
        await asyncio.sleep(0)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -14,6 +14,6 @@ export TORCH_LLM_ALLREDUCE=0
 | 
			
		|||
 | 
			
		||||
export MODEL_PATH=YOUR_MODEL_PATH
 | 
			
		||||
export NUM_GPUS=2
 | 
			
		||||
export BIGDL_QUANTIZE_KV_CACHE=1
 | 
			
		||||
export IPEX_LLM_QUANTIZE_KV_CACHE=1
 | 
			
		||||
 | 
			
		||||
CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS pipeline_serving.py --repo-id-or-model-path $MODEL_PATH --low-bit fp8 --max-num-seqs 4
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -64,7 +64,9 @@ class Dummy_DecoderLayer(nn.Module):
 | 
			
		|||
        self.input_layernorm = DummyLayer()
 | 
			
		||||
        self.mlp = Dummy_MLPLayer()
 | 
			
		||||
 | 
			
		||||
    def forward(self, hidden_states, past_key_value=None, use_cache=False, **kwargs):
 | 
			
		||||
    def forward(self, hidden_states, *args, **kwargs):
 | 
			
		||||
        past_key_value = kwargs.get('past_key_value', None)
 | 
			
		||||
        use_cache = kwargs.get('use_cache', False)
 | 
			
		||||
        outputs = (hidden_states,)
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            outputs += (past_key_value,)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue