add dllib user guide (#3212)
* add dllib user guide * add spark-submit-with-bigdl script * copy scripts to zip
This commit is contained in:
parent
a3dc9a0158
commit
8ba635c101
1 changed files with 313 additions and 3 deletions
|
|
@ -13,14 +13,324 @@ It includes the functionalities of the [original BigDL](https://github.com/intel
|
|||
|
||||
### 2.1 Install
|
||||
|
||||
### 2.2 Run
|
||||
#### 2.1.1 **Download a pre-built library**
|
||||
You can download the bigdl-dllib build from the [Release Page](../release.md).
|
||||
|
||||
### 2.3 Get started (example)
|
||||
#### 2.1.2 **Link with a release version**
|
||||
|
||||
Currently, dllib releases are hosted on maven central; here's an example to add the dllib dependency to your own project:
|
||||
```xml
|
||||
<dependency>
|
||||
<groupId>com.intel.analytics.bigdl</groupId>
|
||||
<artifactId>bigdl-dllib-[spark_2.4.6|spark_3.1.2]</artifactId>
|
||||
<version>${BIGD_DLLIB_VERSION}</version>
|
||||
</dependency>
|
||||
```
|
||||
Please choose the suffix according to your Spark platform.
|
||||
|
||||
SBT developers can use
|
||||
```sbt
|
||||
libraryDependencies += "com.intel.analytics.bigdl" % "dllib-[spark_2.4.6|spark_3.1.2]" % "${BIGDL_DLLIB_VERSION}"
|
||||
```
|
||||
|
||||
### 2.2 Run
|
||||
#### 2.2.1 **Set Environment Variables**
|
||||
Set **BIGDL_HOME** and **SPARK_HOME**:
|
||||
|
||||
* If you download bigdl-dllib from the [Release Page](../release-download.md)
|
||||
```bash
|
||||
export SPARK_HOME=folder path where you extract the spark package
|
||||
export BIGDL_HOME=folder path where you extract the bigdl package
|
||||
```
|
||||
|
||||
---
|
||||
#### 2.2.2 **Use Interactive Spark Shell**
|
||||
You can try bigdl-dllib easily using the Spark interactive shell. Run below command to start spark shell with bigdl-dllib support:
|
||||
```bash
|
||||
${BIGDL_HOME}/bin/spark-shell-with-dllib.sh
|
||||
```
|
||||
You will see a welcome message looking like below:
|
||||
```
|
||||
Welcome to
|
||||
____ __
|
||||
/ __/__ ___ _____/ /__
|
||||
_\ \/ _ \/ _ `/ __/ '_/
|
||||
/___/ .__/\_,_/_/ /_/\_\ version 2.4.3
|
||||
/_/
|
||||
|
||||
Using Scala version 2.11.12 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_181)
|
||||
Spark context available as sc.
|
||||
scala>
|
||||
```
|
||||
|
||||
To use BigDL, you should first initialize the environment as below.
|
||||
```scala
|
||||
scala> import com.intel.analytics.bigdl.dllib.NNContext
|
||||
import com.intel.analytics.bigdl.dllib.NNContext
|
||||
scala> NNContext.initNNContext()
|
||||
2021-10-25 10:12:36 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.
|
||||
2021-10-25 10:12:36 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.
|
||||
res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@525c0f74
|
||||
```
|
||||
|
||||
Once the environment is successfully initiated, you'll be able to play with dllib API's.
|
||||
For instance, to experiment with the ````dllib.keras```` APIs in dllib, you may try below code:
|
||||
```scala
|
||||
scala> import com.intel.analytics.bigdl.dllib.keras.layers._
|
||||
scala> import com.intel.analytics.bigdl.numeric.NumericFloat
|
||||
scala> import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||
|
||||
scala> val seq = Sequential()
|
||||
val layer = ConvLSTM2D(32, 4, returnSequences = true, borderMode = "same",
|
||||
inputShape = Shape(8, 40, 40, 32))
|
||||
seq.add(layer)
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
#### 2.2.3 **Run as a Spark Program**
|
||||
You can run a bigdl-dllib program, e.g., the [Image Inference](https://github.com/intel-analytics/BigDL/blob/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/nnframes/imageInference), as a standard Spark program (running on either a local machine or a distributed cluster) as follows:
|
||||
|
||||
1. Download the pretrained caffe model and prepare the images
|
||||
|
||||
2. Run the following command:
|
||||
```bash
|
||||
# Spark local mode
|
||||
${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \
|
||||
--master local[2] \
|
||||
--class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \
|
||||
${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0
|
||||
-f DATA_PATH \
|
||||
-b 4 \
|
||||
--numLayers 2 --vocab 100 --hidden 6 \
|
||||
--numSteps 3 --learningRate 0.005 -e 1 \
|
||||
--learningRateDecay 0.001 --keepProb 0.5
|
||||
|
||||
# Spark standalone mode
|
||||
## ${SPARK_HOME}/sbin/start-master.sh
|
||||
## check master URL from http://localhost:8080
|
||||
${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \
|
||||
--master spark://... \
|
||||
--executor-cores cores_per_executor \
|
||||
--total-executor-cores total_cores_for_the_job \
|
||||
--class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \
|
||||
${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0
|
||||
-f DATA_PATH \
|
||||
-b 4 \
|
||||
--numLayers 2 --vocab 100 --hidden 6 \
|
||||
--numSteps 3 --learningRate 0.005 -e 1 \
|
||||
--learningRateDecay 0.001 --keepProb 0.5
|
||||
|
||||
# Spark yarn client mode
|
||||
${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \
|
||||
--master yarn \
|
||||
--deploy-mode client \
|
||||
--executor-cores cores_per_executor \
|
||||
--num-executors executors_number \
|
||||
--class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \
|
||||
${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0
|
||||
-f DATA_PATH \
|
||||
-b 4 \
|
||||
--numLayers 2 --vocab 100 --hidden 6 \
|
||||
--numSteps 3 --learningRate 0.005 -e 1 \
|
||||
--learningRateDecay 0.001 --keepProb 0.5
|
||||
|
||||
# Spark yarn cluster mode
|
||||
${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \
|
||||
--master yarn \
|
||||
--deploy-mode cluster \
|
||||
--executor-cores cores_per_executor \
|
||||
--num-executors executors_number \
|
||||
--class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \
|
||||
${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0
|
||||
-f DATA_PATH \
|
||||
-b 4 \
|
||||
--numLayers 2 --vocab 100 --hidden 6 \
|
||||
--numSteps 3 --learningRate 0.005 -e 1 \
|
||||
--learningRateDecay 0.001 --keepProb 0.5
|
||||
```
|
||||
|
||||
The parameters used in the above command are:
|
||||
|
||||
* -f: The path where you put your PTB data.
|
||||
* -b: The mini-batch size. The mini-batch size is expected to be a multiple of *total cores* used in the job. In this example, the mini-batch size is suggested to be set to *total cores * 4*
|
||||
* --learningRate: learning rate for adagrad
|
||||
* --learningRateDecay: learning rate decay for adagrad
|
||||
* --hidden: hiddensize for lstm
|
||||
* --vocabSize: vocabulary size, default 10000
|
||||
* --numLayers: numbers of lstm cell, default 2 lstm cells
|
||||
* --numSteps: number of words per record in LM
|
||||
* --keepProb: the probability to do dropout
|
||||
|
||||
If you are to run your own program, do remember to do the initialize before call other bigdl-dllib API's, as shown below.
|
||||
```scala
|
||||
// Scala code example
|
||||
import com.intel.analytics.bigdl.dllib.NNContext
|
||||
NNContext.initNNContext()
|
||||
```
|
||||
---
|
||||
|
||||
### 2.3 Get started
|
||||
---
|
||||
|
||||
This section show a single example of how to use dllib to build a deep learning application on Spark, using Keras APIs
|
||||
|
||||
---
|
||||
#### **LeNet Model on MNIST using Keras-Style API**
|
||||
|
||||
This tutorial is an explanation of what is happening in the [lenet](https://github.com/intel-analytics/BigDL/tree/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/keras) example
|
||||
|
||||
A bigdl-dllib program starts with initialize as follows.
|
||||
````scala
|
||||
val conf = Engine.createSparkConf()
|
||||
.setAppName("Train Lenet on MNIST")
|
||||
.set("spark.task.maxFailures", "1")
|
||||
val sc = new SparkContext(conf)
|
||||
Engine.init
|
||||
````
|
||||
|
||||
After the initialization, we need to:
|
||||
|
||||
1. Load train and validation data by _**creating the [```DataSet```](https://github.com/intel-analytics/BigDL/blob/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/feature/dataset/DataSet.scala)**_ (e.g., ````SampleToGreyImg````, ````GreyImgNormalizer```` and ````GreyImgToBatch````):
|
||||
|
||||
````scala
|
||||
val trainSet = (if (sc.isDefined) {
|
||||
DataSet.array(load(trainData, trainLabel), sc.get, param.nodeNumber)
|
||||
} else {
|
||||
DataSet.array(load(trainData, trainLabel))
|
||||
}) -> SampleToGreyImg(28, 28) -> GreyImgNormalizer(trainMean, trainStd) -> GreyImgToBatch(
|
||||
param.batchSize)
|
||||
|
||||
val validationSet = DataSet.array(load(validationData, validationLabel), sc) ->
|
||||
BytesToGreyImg(28, 28) -> GreyImgNormalizer(testMean, testStd) -> GreyImgToBatch(
|
||||
param.batchSize)
|
||||
````
|
||||
|
||||
2. We then define Lenet model using Keras-style api
|
||||
````scala
|
||||
val input = Input(inputShape = Shape(28, 28, 1))
|
||||
val reshape = Reshape(Array(1, 28, 28)).inputs(input)
|
||||
val conv1 = Convolution2D(6, 5, 5, activation = "tanh").setName("conv1_5x5").inputs(reshape)
|
||||
val pool1 = MaxPooling2D().inputs(conv1)
|
||||
val conv2 = Convolution2D(12, 5, 5, activation = "tanh").setName("conv2_5x5").inputs(pool1)
|
||||
val pool2 = MaxPooling2D().inputs(conv2)
|
||||
val flatten = Flatten().inputs(pool2)
|
||||
val fc1 = Dense(100, activation = "tanh").setName("fc1").inputs(flatten)
|
||||
val fc2 = Dense(classNum, activation = "softmax").setName("fc2").inputs(fc1)
|
||||
Model(input, fc2)
|
||||
````
|
||||
|
||||
3. After that, we configure the learning process. Set the ````optimization method```` and the ````Criterion```` (which, given input and target, computes gradient per given loss function):
|
||||
````scala
|
||||
model.compile(optimizer = optimMethod,
|
||||
loss = ClassNLLCriterion[Float](logProbAsInput = false),
|
||||
metrics = Array(new Top1Accuracy[Float](), new Top5Accuracy[Float](), new Loss[Float]))
|
||||
````
|
||||
|
||||
Finally we _**train the model**_ by calling ````model.fit````:
|
||||
````scala
|
||||
model.fit(trainSet, nbEpoch = param.maxEpoch, validationData = validationSet)
|
||||
````
|
||||
|
||||
---
|
||||
|
||||
## 3. Python user guide
|
||||
|
||||
### 3.1 Install
|
||||
|
||||
#### 3.1.1 Official Release
|
||||
|
||||
Run below command to install _bigdl-dllib_.
|
||||
|
||||
```bash
|
||||
conda create -n my_env python=3.7
|
||||
conda activate my_env
|
||||
pip install bigdl-dllib
|
||||
```
|
||||
|
||||
#### 3.1.2 Nightly build
|
||||
|
||||
You can install the latest nightly build of bigdl-dllib as follows:
|
||||
```bash
|
||||
pip install --pre --upgrade bigdl-dllib
|
||||
```
|
||||
|
||||
|
||||
### 3.2 Run
|
||||
|
||||
### 3.3 Get started (example)
|
||||
#### **3.2.1 Interactive Shell**
|
||||
|
||||
You may test if the installation is successful using the interactive Python shell as follows:
|
||||
|
||||
* Type `python` in the command line to start a REPL.
|
||||
* Try to run the example code below to verify the installation:
|
||||
|
||||
```python
|
||||
from bigdl.dllib.utils.nncontext import *
|
||||
|
||||
sc = init_nncontext() # Initiation of bigdl-dllib on the underlying cluster.
|
||||
```
|
||||
|
||||
#### **3.2.2 Jupyter Notebook**
|
||||
|
||||
You can start the Jupyter notebook as you normally do using the following command and run bigdl-dllib programs directly in a Jupyter notebook:
|
||||
|
||||
```bash
|
||||
jupyter notebook --notebook-dir=./ --ip=* --no-browser
|
||||
```
|
||||
|
||||
#### **3.2.3 Python Script**
|
||||
|
||||
You can directly write bigdl-dlllib programs in a Python file (e.g. script.py) and run in the command line as a normal Python program:
|
||||
|
||||
```bash
|
||||
python script.py
|
||||
```
|
||||
---
|
||||
### 3.3 Get started
|
||||
---
|
||||
|
||||
#### **Autograd Examples using bigdl-dllb keras Python API**
|
||||
|
||||
This tutorial describes the [Autograd](https://github.com/intel-analytics/BigDL/tree/branch-2.0/python/dllib/examples/autograd).
|
||||
|
||||
The example first do the initializton using `init_nncontext()`:
|
||||
```python
|
||||
sc = init_nncontext()
|
||||
```
|
||||
|
||||
It then generate the input data X_, Y_
|
||||
|
||||
```python
|
||||
data_len = 1000
|
||||
X_ = np.random.uniform(0, 1, (1000, 2))
|
||||
Y_ = ((2 * X_).sum(1) + 0.4).reshape([data_len, 1])
|
||||
```
|
||||
|
||||
It then define the custom loss
|
||||
|
||||
```python
|
||||
def mean_absolute_error(y_true, y_pred):
|
||||
result = mean(abs(y_true - y_pred), axis=1)
|
||||
return result
|
||||
```
|
||||
|
||||
After that, the example creates the model as follows and set the criterion as the custom loss:
|
||||
```python
|
||||
a = Input(shape=(2,))
|
||||
b = Dense(1)(a)
|
||||
c = Lambda(function=add_one_func)(b)
|
||||
model = Model(input=a, output=c)
|
||||
|
||||
model.compile(optimizer=SGD(learningrate=1e-2),
|
||||
loss=mean_absolute_error)
|
||||
```
|
||||
Finally the example trains the model by calling `model.fit`:
|
||||
|
||||
```python
|
||||
model.fit(x=X_,
|
||||
y=Y_,
|
||||
batch_size=32,
|
||||
nb_epoch=int(options.nb_epoch),
|
||||
distributed=False)
|
||||
```
|
||||
Loading…
Reference in a new issue