add dllib user guide (#3212)

* add dllib user guide

* add spark-submit-with-bigdl script

* copy scripts to zip
This commit is contained in:
dding3 2021-10-25 23:07:41 -07:00 committed by GitHub
parent a3dc9a0158
commit 8ba635c101

View file

@ -13,14 +13,324 @@ It includes the functionalities of the [original BigDL](https://github.com/intel
### 2.1 Install
### 2.2 Run
#### 2.1.1 **Download a pre-built library**
You can download the bigdl-dllib build from the [Release Page](../release.md).
### 2.3 Get started (example)
#### 2.1.2 **Link with a release version**
Currently, dllib releases are hosted on maven central; here's an example to add the dllib dependency to your own project:
```xml
<dependency>
<groupId>com.intel.analytics.bigdl</groupId>
<artifactId>bigdl-dllib-[spark_2.4.6|spark_3.1.2]</artifactId>
<version>${BIGD_DLLIB_VERSION}</version>
</dependency>
```
Please choose the suffix according to your Spark platform.
SBT developers can use
```sbt
libraryDependencies += "com.intel.analytics.bigdl" % "dllib-[spark_2.4.6|spark_3.1.2]" % "${BIGDL_DLLIB_VERSION}"
```
### 2.2 Run
#### 2.2.1 **Set Environment Variables**
Set **BIGDL_HOME** and **SPARK_HOME**:
* If you download bigdl-dllib from the [Release Page](../release-download.md)
```bash
export SPARK_HOME=folder path where you extract the spark package
export BIGDL_HOME=folder path where you extract the bigdl package
```
---
#### 2.2.2 **Use Interactive Spark Shell**
You can try bigdl-dllib easily using the Spark interactive shell. Run below command to start spark shell with bigdl-dllib support:
```bash
${BIGDL_HOME}/bin/spark-shell-with-dllib.sh
```
You will see a welcome message looking like below:
```
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.4.3
/_/
Using Scala version 2.11.12 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_181)
Spark context available as sc.
scala>
```
To use BigDL, you should first initialize the environment as below.
```scala
scala> import com.intel.analytics.bigdl.dllib.NNContext
import com.intel.analytics.bigdl.dllib.NNContext
scala> NNContext.initNNContext()
2021-10-25 10:12:36 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.
2021-10-25 10:12:36 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.
res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@525c0f74
```
Once the environment is successfully initiated, you'll be able to play with dllib API's.
For instance, to experiment with the ````dllib.keras```` APIs in dllib, you may try below code:
```scala
scala> import com.intel.analytics.bigdl.dllib.keras.layers._
scala> import com.intel.analytics.bigdl.numeric.NumericFloat
scala> import com.intel.analytics.bigdl.dllib.utils.Shape
scala> val seq = Sequential()
val layer = ConvLSTM2D(32, 4, returnSequences = true, borderMode = "same",
inputShape = Shape(8, 40, 40, 32))
seq.add(layer)
```
---
#### 2.2.3 **Run as a Spark Program**
You can run a bigdl-dllib program, e.g., the [Image Inference](https://github.com/intel-analytics/BigDL/blob/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/nnframes/imageInference), as a standard Spark program (running on either a local machine or a distributed cluster) as follows:
1. Download the pretrained caffe model and prepare the images
2. Run the following command:
```bash
# Spark local mode
${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \
--master local[2] \
--class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \
${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0
-f DATA_PATH \
-b 4 \
--numLayers 2 --vocab 100 --hidden 6 \
--numSteps 3 --learningRate 0.005 -e 1 \
--learningRateDecay 0.001 --keepProb 0.5
# Spark standalone mode
## ${SPARK_HOME}/sbin/start-master.sh
## check master URL from http://localhost:8080
${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \
--master spark://... \
--executor-cores cores_per_executor \
--total-executor-cores total_cores_for_the_job \
--class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \
${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0
-f DATA_PATH \
-b 4 \
--numLayers 2 --vocab 100 --hidden 6 \
--numSteps 3 --learningRate 0.005 -e 1 \
--learningRateDecay 0.001 --keepProb 0.5
# Spark yarn client mode
${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \
--master yarn \
--deploy-mode client \
--executor-cores cores_per_executor \
--num-executors executors_number \
--class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \
${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0
-f DATA_PATH \
-b 4 \
--numLayers 2 --vocab 100 --hidden 6 \
--numSteps 3 --learningRate 0.005 -e 1 \
--learningRateDecay 0.001 --keepProb 0.5
# Spark yarn cluster mode
${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \
--master yarn \
--deploy-mode cluster \
--executor-cores cores_per_executor \
--num-executors executors_number \
--class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \
${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0
-f DATA_PATH \
-b 4 \
--numLayers 2 --vocab 100 --hidden 6 \
--numSteps 3 --learningRate 0.005 -e 1 \
--learningRateDecay 0.001 --keepProb 0.5
```
The parameters used in the above command are:
* -f: The path where you put your PTB data.
* -b: The mini-batch size. The mini-batch size is expected to be a multiple of *total cores* used in the job. In this example, the mini-batch size is suggested to be set to *total cores * 4*
* --learningRate: learning rate for adagrad
* --learningRateDecay: learning rate decay for adagrad
* --hidden: hiddensize for lstm
* --vocabSize: vocabulary size, default 10000
* --numLayers: numbers of lstm cell, default 2 lstm cells
* --numSteps: number of words per record in LM
* --keepProb: the probability to do dropout
If you are to run your own program, do remember to do the initialize before call other bigdl-dllib API's, as shown below.
```scala
// Scala code example
import com.intel.analytics.bigdl.dllib.NNContext
NNContext.initNNContext()
```
---
### 2.3 Get started
---
This section show a single example of how to use dllib to build a deep learning application on Spark, using Keras APIs
---
#### **LeNet Model on MNIST using Keras-Style API**
This tutorial is an explanation of what is happening in the [lenet](https://github.com/intel-analytics/BigDL/tree/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/keras) example
A bigdl-dllib program starts with initialize as follows.
````scala
val conf = Engine.createSparkConf()
.setAppName("Train Lenet on MNIST")
.set("spark.task.maxFailures", "1")
val sc = new SparkContext(conf)
Engine.init
````
After the initialization, we need to:
1. Load train and validation data by _**creating the [```DataSet```](https://github.com/intel-analytics/BigDL/blob/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/feature/dataset/DataSet.scala)**_ (e.g., ````SampleToGreyImg````, ````GreyImgNormalizer```` and ````GreyImgToBatch````):
````scala
val trainSet = (if (sc.isDefined) {
DataSet.array(load(trainData, trainLabel), sc.get, param.nodeNumber)
} else {
DataSet.array(load(trainData, trainLabel))
}) -> SampleToGreyImg(28, 28) -> GreyImgNormalizer(trainMean, trainStd) -> GreyImgToBatch(
param.batchSize)
val validationSet = DataSet.array(load(validationData, validationLabel), sc) ->
BytesToGreyImg(28, 28) -> GreyImgNormalizer(testMean, testStd) -> GreyImgToBatch(
param.batchSize)
````
2. We then define Lenet model using Keras-style api
````scala
val input = Input(inputShape = Shape(28, 28, 1))
val reshape = Reshape(Array(1, 28, 28)).inputs(input)
val conv1 = Convolution2D(6, 5, 5, activation = "tanh").setName("conv1_5x5").inputs(reshape)
val pool1 = MaxPooling2D().inputs(conv1)
val conv2 = Convolution2D(12, 5, 5, activation = "tanh").setName("conv2_5x5").inputs(pool1)
val pool2 = MaxPooling2D().inputs(conv2)
val flatten = Flatten().inputs(pool2)
val fc1 = Dense(100, activation = "tanh").setName("fc1").inputs(flatten)
val fc2 = Dense(classNum, activation = "softmax").setName("fc2").inputs(fc1)
Model(input, fc2)
````
3. After that, we configure the learning process. Set the ````optimization method```` and the ````Criterion```` (which, given input and target, computes gradient per given loss function):
````scala
model.compile(optimizer = optimMethod,
loss = ClassNLLCriterion[Float](logProbAsInput = false),
metrics = Array(new Top1Accuracy[Float](), new Top5Accuracy[Float](), new Loss[Float]))
````
Finally we _**train the model**_ by calling ````model.fit````:
````scala
model.fit(trainSet, nbEpoch = param.maxEpoch, validationData = validationSet)
````
---
## 3. Python user guide
### 3.1 Install
#### 3.1.1 Official Release
Run below command to install _bigdl-dllib_.
```bash
conda create -n my_env python=3.7
conda activate my_env
pip install bigdl-dllib
```
#### 3.1.2 Nightly build
You can install the latest nightly build of bigdl-dllib as follows:
```bash
pip install --pre --upgrade bigdl-dllib
```
### 3.2 Run
### 3.3 Get started (example)
#### **3.2.1 Interactive Shell**
You may test if the installation is successful using the interactive Python shell as follows:
* Type `python` in the command line to start a REPL.
* Try to run the example code below to verify the installation:
```python
from bigdl.dllib.utils.nncontext import *
sc = init_nncontext() # Initiation of bigdl-dllib on the underlying cluster.
```
#### **3.2.2 Jupyter Notebook**
You can start the Jupyter notebook as you normally do using the following command and run bigdl-dllib programs directly in a Jupyter notebook:
```bash
jupyter notebook --notebook-dir=./ --ip=* --no-browser
```
#### **3.2.3 Python Script**
You can directly write bigdl-dlllib programs in a Python file (e.g. script.py) and run in the command line as a normal Python program:
```bash
python script.py
```
---
### 3.3 Get started
---
#### **Autograd Examples using bigdl-dllb keras Python API**
This tutorial describes the [Autograd](https://github.com/intel-analytics/BigDL/tree/branch-2.0/python/dllib/examples/autograd).
The example first do the initializton using `init_nncontext()`:
```python
sc = init_nncontext()
```
It then generate the input data X_, Y_
```python
data_len = 1000
X_ = np.random.uniform(0, 1, (1000, 2))
Y_ = ((2 * X_).sum(1) + 0.4).reshape([data_len, 1])
```
It then define the custom loss
```python
def mean_absolute_error(y_true, y_pred):
result = mean(abs(y_true - y_pred), axis=1)
return result
```
After that, the example creates the model as follows and set the criterion as the custom loss:
```python
a = Input(shape=(2,))
b = Dense(1)(a)
c = Lambda(function=add_one_func)(b)
model = Model(input=a, output=c)
model.compile(optimizer=SGD(learningrate=1e-2),
loss=mean_absolute_error)
```
Finally the example trains the model by calling `model.fit`:
```python
model.fit(x=X_,
y=Y_,
batch_size=32,
nb_epoch=int(options.nb_epoch),
distributed=False)
```