Add fp6 support on gpu (#11008)

* add fp6 support

* fix style
This commit is contained in:
Yina Chen 2024-05-14 16:31:44 +08:00 committed by GitHub
parent b03c859278
commit 893197434d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 11 additions and 8 deletions

View file

@ -46,7 +46,8 @@ ggml_tensor_qtype = {"sym_int4": 2, # q4_0 in ggml
"gguf_iq1_s": 24,
"gguf_iq1_m": 25,
"q6_k": 26,
"q4_k": 27}
"q4_k": 27,
"fp6": 29}
_llama_quantize_type = {"q4_0": 2,
"q4_1": 3,

View file

@ -72,6 +72,7 @@ FP4 = ggml_tensor_qtype["fp4"]
MOFQ4 = ggml_tensor_qtype["mixed_fp4"]
MOFQ8 = ggml_tensor_qtype["mixed_fp8"]
FP8E5 = ggml_tensor_qtype["fp8_e5m2"]
FP6 = ggml_tensor_qtype["fp6"]
IQ2_XXS = ggml_tensor_qtype["gguf_iq2_xxs"]
IQ2_XS = ggml_tensor_qtype["gguf_iq2_xs"]
Q2_K = ggml_tensor_qtype["q2_k"]
@ -242,7 +243,7 @@ def ggml_q_format_convet_cpu2xpu(tensor: torch.Tensor, num_elem: int, qtype: int
src = ctypes.c_void_p(tensor.data.data_ptr())
if qtype in [SYM_INT4, ASYM_INT4, SYM_INT8, NF4, NF3, FP4, FP8E4, FP8E5]:
if qtype in [SYM_INT4, ASYM_INT4, SYM_INT8, NF4, NF3, FP4, FP6, FP8E4, FP8E5]:
dst_tensor = torch.empty_like(tensor)
elif qtype == ggml_tensor_qtype["sym_int5"]:
QK = ggml.ggml_qk_size(qtype)

View file

@ -117,11 +117,12 @@ class _BaseAutoModelClass:
Default to be ``False``.
:param load_in_low_bit: str value, options are ``'sym_int4'``, ``'asym_int4'``,
``'sym_int5'``, ``'asym_int5'``, ``'sym_int8'``, ``'nf3'``,
``'nf4'``, ``'fp4'``, ``'fp8'``, ``'fp8_e4m3'``, ``'fp8_e5m2'``,
``'gguf_iq2_xxs'``, ``'gguf_iq2_xs'``, gguf_iq1_s'``,
``'fp16'``, ``'bf16'``, ``'q4_k'`` or ``'q6_k'``,
``'sym_int4'`` means symmetric int 4, ``'asym_int4'`` means
asymmetric int 4, ``'nf4'`` means 4-bit NormalFloat, etc.
``'nf4'``, ``'fp4'``, ``'fp6'`` ``'fp8'``, ``'fp8_e4m3'``,
``'fp8_e5m2'``, ``'gguf_iq2_xxs'``, ``'gguf_iq2_xs'``,
``'gguf_iq1_s'``, ``'fp16'``, ``'bf16'``, ``'q4_k'`` or
``'q6_k'``, ``'sym_int4'`` means symmetric int 4,
``'asym_int4'`` means asymmetric int 4,
``'nf4'`` means 4-bit NormalFloat, etc.
Relevant low bit optimizations will be applied to the model.
:param optimize_model: boolean value, Whether to further optimize the low_bit llm model.
Default to be ``True``.
@ -378,7 +379,7 @@ class _BaseAutoModelClass:
invalidInputError(q_k in ggml_tensor_qtype,
f"Unknown load_in_low_bit value: {q_k}, expected:"
f" sym_int4, asym_int4, sym_int5, asym_int5, sym_int8, nf3, nf4, "
f"fp4, fp8, fp8_e4m3, fp8_e5m2, fp16, bf16, gguf_iq2_xxs, "
f"fp4, fp6, fp8, fp8_e4m3, fp8_e5m2, fp16, bf16, gguf_iq2_xxs, "
f"gguf_iq2_xs, gguf_iq1_s, q2_k, q4_k, q6_k, mixed_fp4 or mixed_fp8.")
qtype = ggml_tensor_qtype[q_k]