Add gpu gguf example (#9603)

* add gpu gguf example

* some fixes

* address kai's comments

* address json's comments
This commit is contained in:
dingbaorong 2023-12-06 15:17:54 +08:00 committed by GitHub
parent 0e8f4020e5
commit 89069d6173
5 changed files with 146 additions and 2 deletions

View file

@ -13,7 +13,7 @@
### Latest update
- [2023/12] `bigdl-llm` now supports [FP8 and FP4 inference](python/llm/example/GPU/HF-Transformers-AutoModels/More-Data-Types) on Intel ***GPU***.
- [2023/11] Initial support for directly loading [GGUF](python/llm/example/CPU/GGUF-Models/llama2), [AWQ](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/AWQ) and [GPTQ](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GPTQ) models in to `bigdl-llm` is available.
- [2023/11] Initial support for directly loading [GGUF](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF), [AWQ](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/AWQ) and [GPTQ](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GPTQ) models in to `bigdl-llm` is available.
- [2023/11] Initial support for [vLLM continuous batching](python/llm/example/CPU/vLLM-Serving) is availabe on Intel ***CPU***.
- [2023/11] Initial support for [vLLM continuous batching](python/llm/example/GPU/vLLM-Serving) is availabe on Intel ***GPU***.
- [2023/10] [QLoRA finetuning](python/llm/example/CPU/QLoRA-FineTuning) on Intel ***CPU*** is available.

View file

@ -5,6 +5,9 @@ In this directory, you will find examples on how to load GGUF model into `bigdl-
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
**Important: Please make sure you have installed `transformers==4.33.0` to run the example.**
## Example: Load gguf model using `from_gguf()` API
In the example [generate.py](./generate.py), we show a basic use case to load a GGUF LLaMA2 model into `bigdl-llm` using `from_gguf()` API, with BigDL-LLM optimizations.
@ -17,6 +20,7 @@ conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
pip install transformers==4.33.0 # upgrade transformers
```
### 2. Run
@ -50,7 +54,7 @@ In the example, several arguments can be passed to satisfy your requirements:
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### 2.3 Sample Output
#### 2.4 Sample Output
#### [llama-2-7b-chat.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main)
```log
Inference time: xxxx s

View file

@ -0,0 +1,77 @@
# Loading GGUF models
In this directory, you will find examples on how to load GGUF model into `bigdl-llm`. For illustration purposes, we utilize the [llama-2-7b-chat.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main) and [llama-2-7b-chat.Q4_1.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main) as reference LLaMA2 GGUF models.
>Note: Only LLaMA2 family models are currently supported
## Requirements
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
**Important: Please make sure you have installed `transformers==4.33.0` to run the example.**
## Example: Load gguf model using `from_gguf()` API
In the example [generate.py](./generate.py), we show a basic use case to load a GGUF LLaMA2 model into `bigdl-llm` using `from_gguf()` API, with BigDL-LLM optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
After installing conda, create a Python environment for BigDL-LLM:
```bash
conda create -n llm python=3.9 # recommend to use Python 3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install transformers==4.33.0 # upgrade transformers
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
```
python ./generate.py --model <path_to_gguf_model> --prompt 'What is AI?'
```
More information about arguments can be found in [Arguments Info](#33-arguments-info) section. The expected output can be found in [Sample Output](#34-sample-output) section.
#### 3.3 Arguments Info
In the example, several arguments can be passed to satisfy your requirements:
- `--model`: path to GGUF model, it should be a file with name like `llama-2-7b-chat.Q4_0.gguf`
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### 3.4 Sample Output
#### [llama-2-7b-chat.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main)
```log
Inference time: xxxx s
-------------------- Output --------------------
### HUMAN:
What is AI?
### RESPONSE:
AI is a term used to describe a type of computer software that is designed to perform tasks that typically require human intelligence, such as visual perception, speech
```
#### [llama-2-7b-chat.Q4_1.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main)
```log
Inference time: xxxx s
-------------------- Output --------------------
### HUMAN:
What is AI?
### RESPONSE:
Artificial intelligence (AI) is the field of study focused on creating machines that can perform tasks that typically require human intelligence, such as understanding language,
```

View file

@ -0,0 +1,63 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
from transformers import LlamaTokenizer
from bigdl.llm.transformers import AutoModelForCausalLM
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
LLAMA2_PROMPT_FORMAT = """### HUMAN:
{prompt}
### RESPONSE:
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--model', type=str, required=True,
help='Path to a gguf model')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.model
# Load gguf model and vocab, then convert them to bigdl-llm model and huggingface tokenizer
model, tokenizer = AutoModelForCausalLM.from_gguf(model_path)
model = model.to('xpu')
# Generate predicted tokens
with torch.inference_mode():
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output = output.cpu()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output_str)