Add gpu gguf example (#9603)
* add gpu gguf example * some fixes * address kai's comments * address json's comments
This commit is contained in:
		
							parent
							
								
									0e8f4020e5
								
							
						
					
					
						commit
						89069d6173
					
				
					 5 changed files with 146 additions and 2 deletions
				
			
		| 
						 | 
				
			
			@ -13,7 +13,7 @@
 | 
			
		|||
 | 
			
		||||
### Latest update
 | 
			
		||||
- [2023/12] `bigdl-llm` now supports [FP8 and FP4 inference](python/llm/example/GPU/HF-Transformers-AutoModels/More-Data-Types) on Intel ***GPU***.
 | 
			
		||||
- [2023/11] Initial support for directly loading [GGUF](python/llm/example/CPU/GGUF-Models/llama2), [AWQ](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/AWQ) and [GPTQ](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GPTQ) models in to `bigdl-llm` is available.
 | 
			
		||||
- [2023/11] Initial support for directly loading [GGUF](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF), [AWQ](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/AWQ) and [GPTQ](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GPTQ) models in to `bigdl-llm` is available.
 | 
			
		||||
- [2023/11] Initial support for [vLLM continuous batching](python/llm/example/CPU/vLLM-Serving) is availabe on Intel ***CPU***.
 | 
			
		||||
- [2023/11] Initial support for [vLLM continuous batching](python/llm/example/GPU/vLLM-Serving) is availabe on Intel ***GPU***.
 | 
			
		||||
- [2023/10] [QLoRA finetuning](python/llm/example/CPU/QLoRA-FineTuning) on Intel ***CPU*** is available.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -5,6 +5,9 @@ In this directory, you will find examples on how to load GGUF model into `bigdl-
 | 
			
		|||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
**Important: Please make sure you have installed `transformers==4.33.0` to run the example.**
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
## Example: Load gguf model using `from_gguf()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case to load a GGUF LLaMA2 model into `bigdl-llm` using `from_gguf()` API, with BigDL-LLM optimizations.
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -17,6 +20,7 @@ conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		|||
conda activate llm
 | 
			
		||||
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
 | 
			
		||||
pip install transformers==4.33.0  # upgrade transformers
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Run
 | 
			
		||||
| 
						 | 
				
			
			@ -50,7 +54,7 @@ In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		|||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### 2.3 Sample Output
 | 
			
		||||
#### 2.4 Sample Output
 | 
			
		||||
#### [llama-2-7b-chat.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,77 @@
 | 
			
		|||
# Loading GGUF models
 | 
			
		||||
In this directory, you will find examples on how to load GGUF model into `bigdl-llm`. For illustration purposes, we utilize the [llama-2-7b-chat.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main) and [llama-2-7b-chat.Q4_1.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main) as reference LLaMA2 GGUF models.
 | 
			
		||||
>Note: Only LLaMA2 family models are currently supported
 | 
			
		||||
 | 
			
		||||
## Requirements
 | 
			
		||||
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
**Important: Please make sure you have installed `transformers==4.33.0` to run the example.**
 | 
			
		||||
 | 
			
		||||
## Example: Load gguf model using `from_gguf()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case to load a GGUF LLaMA2 model into `bigdl-llm` using `from_gguf()` API, with BigDL-LLM optimizations.
 | 
			
		||||
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
 | 
			
		||||
 | 
			
		||||
After installing conda, create a Python environment for BigDL-LLM:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.9 # recommend to use Python 3.9
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
 | 
			
		||||
# you can install specific ipex/torch version for your need
 | 
			
		||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
			
		||||
pip install transformers==4.33.0  # upgrade transformers
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 3. Run
 | 
			
		||||
 | 
			
		||||
For optimal performance on Arc, it is recommended to set several environment variables.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --model <path_to_gguf_model> --prompt 'What is AI?'
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
More information about arguments can be found in [Arguments Info](#33-arguments-info) section. The expected output can be found in [Sample Output](#34-sample-output) section.
 | 
			
		||||
 | 
			
		||||
#### 3.3 Arguments Info
 | 
			
		||||
In the example, several arguments can be passed to satisfy your requirements:
 | 
			
		||||
 | 
			
		||||
- `--model`: path to GGUF model, it should be a file with name like `llama-2-7b-chat.Q4_0.gguf`
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### 3.4 Sample Output
 | 
			
		||||
#### [llama-2-7b-chat.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
### HUMAN:
 | 
			
		||||
What is AI?
 | 
			
		||||
 | 
			
		||||
### RESPONSE:
 | 
			
		||||
 | 
			
		||||
AI is a term used to describe a type of computer software that is designed to perform tasks that typically require human intelligence, such as visual perception, speech
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### [llama-2-7b-chat.Q4_1.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/tree/main)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
### HUMAN:
 | 
			
		||||
What is AI?
 | 
			
		||||
 | 
			
		||||
### RESPONSE:
 | 
			
		||||
 | 
			
		||||
Artificial intelligence (AI) is the field of study focused on creating machines that can perform tasks that typically require human intelligence, such as understanding language,
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,63 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import intel_extension_for_pytorch as ipex
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
 | 
			
		||||
from transformers import LlamaTokenizer
 | 
			
		||||
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
			
		||||
 | 
			
		||||
# you could tune the prompt based on your own model,
 | 
			
		||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
 | 
			
		||||
LLAMA2_PROMPT_FORMAT = """### HUMAN:
 | 
			
		||||
{prompt}
 | 
			
		||||
 | 
			
		||||
### RESPONSE:
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
 | 
			
		||||
    parser.add_argument('--model', type=str, required=True,
 | 
			
		||||
                        help='Path to a gguf model')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is AI?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    model_path = args.model
 | 
			
		||||
 | 
			
		||||
    # Load gguf model and vocab, then convert them to bigdl-llm model and huggingface tokenizer
 | 
			
		||||
    model, tokenizer = AutoModelForCausalLM.from_gguf(model_path)
 | 
			
		||||
    model = model.to('xpu')
 | 
			
		||||
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
			
		||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        output = model.generate(input_ids,
 | 
			
		||||
                                max_new_tokens=args.n_predict)
 | 
			
		||||
        torch.xpu.synchronize()
 | 
			
		||||
        end = time.time()
 | 
			
		||||
        output = output.cpu()
 | 
			
		||||
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Output', '-'*20)
 | 
			
		||||
        print(output_str)
 | 
			
		||||
		Loading…
	
		Reference in a new issue