add export merged model example (#9018)

* add export merged model example

* add sources

* add script

* fix style
This commit is contained in:
Yang Wang 2023-10-05 12:18:52 +08:00 committed by GitHub
parent 0cd8f1c79c
commit 88565c76f6
4 changed files with 118 additions and 16 deletions

View file

@ -1,4 +1,4 @@
# Q-Lora (experimental support)
# Finetuning LLAMA Using Q-Lora (experimental support)
This example demonstrates how to finetune a llama2-7b model use Big-LLM 4bit optimizations using [Intel GPUs](../README.md).
@ -7,7 +7,7 @@ To run this example with BigDL-LLM on Intel GPUs, we have some recommended requi
## Example: Finetune llama2-7b using qlora
This example is ported from [bnb-4bit-training](https://colab.research.google.com/drive/1VoYNfYDKcKRQRor98Zbf2-9VQTtGJ24k?usp=sharing)
This example is ported from [bnb-4bit-training](https://colab.research.google.com/drive/1VoYNfYDKcKRQRor98Zbf2-9VQTtGJ24k?usp=sharing). The `export_merged_model.py` is ported from [alpaca-lora](https://github.com/tloen/alpaca-lora/blob/main/export_hf_checkpoint.py).
### 1. Install
@ -26,13 +26,13 @@ pip install peft==0.5.0
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
### 3. Finetune model
```
python ./qlora_finetuning.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH
```
### Sample Output
#### Sample Output
```log
{'loss': 1.6134, 'learning_rate': 0.0002, 'epoch': 0.03}
{'loss': 1.3038, 'learning_rate': 0.00017777777777777779, 'epoch': 0.06}
@ -47,4 +47,12 @@ python ./qlora_finetuning.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH
{'train_runtime': 225.8005, 'train_samples_per_second': 3.543, 'train_steps_per_second': 0.886, 'train_loss': 1.211241865158081, 'epoch': 0.32}
100%|██████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [03:45<00:00, 1.13s/it]
TrainOutput(global_step=200, training_loss=1.211241865158081, metrics={'train_runtime': 225.8005, 'train_samples_per_second': 3.543, 'train_steps_per_second': 0.886, 'train_loss': 1.211241865158081, 'epoch': 0.32})
```
```
### 4. Merge the adapter into the original model
```
python ./export_merged_model.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --adapter_path ./outputs/checkpoint-200 --output_path ./outputs/checkpoint-200-merged
```
Then you can use `./outputs/checkpoint-200-merged` as a normal huggingface transformer model to do inference.

View file

@ -0,0 +1,93 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is adapted from https://github.com/tloen/alpaca-lora/blob/main/export_hf_checkpoint.py
#
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
import transformers
from transformers import LlamaTokenizer # noqa: F402
from bigdl.llm.transformers.qlora import PeftModel
from bigdl.llm.transformers import AutoModelForCausalLM
import argparse
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--adapter_path', type=str,)
parser.add_argument('--output_path', type=str,)
args = parser.parse_args()
base_model = model_path = args.repo_id_or_model_path
adapter_path = args.adapter_path
tokenizer = LlamaTokenizer.from_pretrained(base_model)
base_model = AutoModelForCausalLM.from_pretrained(
base_model,
# load_in_low_bit="nf4", # should load the orignal model
torch_dtype=torch.float16,
device_map={"": "cpu"},
)
first_weight = base_model.model.layers[0].self_attn.q_proj.weight
first_weight_old = first_weight.clone()
lora_model = PeftModel.from_pretrained(
base_model,
adapter_path,
device_map={"": "cpu"},
torch_dtype=torch.float16,
)
lora_weight = lora_model.base_model.model.model.layers[
0
].self_attn.q_proj.weight
assert torch.allclose(first_weight_old, first_weight)
# merge weights - new merging method from peft
lora_model = lora_model.merge_and_unload()
lora_model.train(False)
# did we do anything?
assert not torch.allclose(first_weight_old, first_weight)
lora_model_sd = lora_model.state_dict()
deloreanized_sd = {
k.replace("base_model.model.", ""): v
for k, v in lora_model_sd.items()
if "lora" not in k
}
base_model.save_pretrained(args.output_path, state_dict=deloreanized_sd)
tokenizer.save_pretrained(args.output_path)

View file

@ -45,8 +45,9 @@ if __name__ == "__main__":
data = load_dataset(dataset_path)
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
load_in_low_bit="nf4",
optimize_model=False,
torch_dtype=torch.float16,
modules_to_not_convert=["lm_head"],)
model = model.to('xpu')
model.gradient_checkpointing_enable()
@ -71,7 +72,8 @@ if __name__ == "__main__":
warmup_steps=20,
max_steps=200,
learning_rate=2e-4,
fp16=False, # fp16 is not supported yet
save_steps=100,
fp16=True,
logging_steps=20,
output_dir="outputs",
optim="adamw_hf", # paged_adamw_8bit is not supported yet

View file

@ -36,6 +36,7 @@ import torch
from bigdl.llm.transformers.low_bit_linear import LowBitLinear
from peft.tuners.lora import LoraLayer
from bigdl.llm.utils.common import invalidInputError
import functools
class LoraLowBitLinear(LowBitLinear, LoraLayer):
@ -94,13 +95,11 @@ class LoraLowBitLinear(LowBitLinear, LoraLayer):
return result
@staticmethod
def _create_new_module(lora_config, adapter_name, target, **kwargs):
bias = kwargs.pop("bias", False)
def _create_new_module(create_new_module_func, lora_config, adapter_name, target, **kwargs):
if isinstance(target, LowBitLinear):
low_bit_kwargs = kwargs.copy()
bias = low_bit_kwargs.pop("bias", False)
low_bit_kwargs.update(
{
"qtype": target.qtype,
@ -112,9 +111,7 @@ def _create_new_module(lora_config, adapter_name, target, **kwargs):
bias=bias,
**low_bit_kwargs)
else:
invalidInputError(False,
f"Target module {target} is not supported. "
f"Currently, only `LowBitLinear` are supported.")
new_module = create_new_module_func(lora_config, adapter_name, target, **kwargs)
return new_module
@ -124,7 +121,8 @@ from peft.tuners.lora import LoraModel
def get_peft_model(*args, **kwargs):
old_create_new_module = LoraModel._create_new_module
LoraModel._create_new_module = _create_new_module
LoraModel._create_new_module = staticmethod(functools.partial(_create_new_module,
old_create_new_module))
try:
from peft import get_peft_model as get_peft_model_original
model = get_peft_model_original(*args, **kwargs)
@ -181,7 +179,8 @@ class PeftModel:
def from_pretrained(*args,
**kwargs):
old_create_new_module = LoraModel._create_new_module
LoraModel._create_new_module = _create_new_module
LoraModel._create_new_module = staticmethod(functools.partial(_create_new_module,
old_create_new_module))
from peft import PeftModel
try:
model = PeftModel.from_pretrained(*args, **kwargs)