LLM: add benchmark tool for gpu (#8760)

* add benchmark tool for gpu

* update
This commit is contained in:
Ruonan Wang 2023-08-16 11:22:10 +08:00 committed by GitHub
parent 97283c033c
commit 8805186f2f
2 changed files with 4720 additions and 2 deletions

View file

@ -1,8 +1,10 @@
# Benchmark tool for transformers int4 (separate 1st token and rest)
`benchmark_util.py` is used to provide a simple benchmark tool for transformer int4 model to calculate 1st token performance and the rest.
`benchmark_util.py` is used to provide a simple benchmark tool for transformer int4 model to calculate 1st token performance and the rest on CPU.
## Usage
`gpu_benchmark_util.py` is used to provide a simple benchmark tool for transformer int4 model to calculate 1st token performance and the rest on GPU.
## CPU Usage
Just put this file into your benchmark directory, and then wrap your transformer int4 model with `BenchmarkWrapper` (`model = BenchmarkWrapper(model)`).
Take `chatglm-6b` as an example:
```python
@ -30,3 +32,34 @@ Output will be like:
=========First token cost xx.xxxxs=========
=========Last token cost average xx.xxxxs (31 tokens in all)=========
```
## GPU Usage
Just put this file into your benchmark directory, and then wrap your transformer int4 model with `BenchmarkWrapper` (`model = BenchmarkWrapper(model)`).
Take `chatglm-6b` as an example:
```python
import torch
import os
import intel_extension_for_pytorch as ipex
from bigdl.llm.transformers import AutoModel
from transformers import AutoTokenizer
import time
import numpy as np
from gpu_benchmark_util import BenchmarkWrapper
model_path ='THUDM/chatglm-6b'
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
model = model.half().to('xpu')
model = BenchmarkWrapper(model)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompt = "今天睡不着怎么办"
with torch.inference_mode():
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
```
Output will be like:
```bash
=========First token cost xx.xxxxs=========
=========Last token cost average xx.xxxxs (31 tokens in all)=========
```

File diff suppressed because it is too large Load diff