LLM: add benchmark tool for gpu (#8760)
* add benchmark tool for gpu * update
This commit is contained in:
parent
97283c033c
commit
8805186f2f
2 changed files with 4720 additions and 2 deletions
|
|
@ -1,8 +1,10 @@
|
||||||
# Benchmark tool for transformers int4 (separate 1st token and rest)
|
# Benchmark tool for transformers int4 (separate 1st token and rest)
|
||||||
|
|
||||||
`benchmark_util.py` is used to provide a simple benchmark tool for transformer int4 model to calculate 1st token performance and the rest.
|
`benchmark_util.py` is used to provide a simple benchmark tool for transformer int4 model to calculate 1st token performance and the rest on CPU.
|
||||||
|
|
||||||
## Usage
|
`gpu_benchmark_util.py` is used to provide a simple benchmark tool for transformer int4 model to calculate 1st token performance and the rest on GPU.
|
||||||
|
|
||||||
|
## CPU Usage
|
||||||
Just put this file into your benchmark directory, and then wrap your transformer int4 model with `BenchmarkWrapper` (`model = BenchmarkWrapper(model)`).
|
Just put this file into your benchmark directory, and then wrap your transformer int4 model with `BenchmarkWrapper` (`model = BenchmarkWrapper(model)`).
|
||||||
Take `chatglm-6b` as an example:
|
Take `chatglm-6b` as an example:
|
||||||
```python
|
```python
|
||||||
|
|
@ -30,3 +32,34 @@ Output will be like:
|
||||||
=========First token cost xx.xxxxs=========
|
=========First token cost xx.xxxxs=========
|
||||||
=========Last token cost average xx.xxxxs (31 tokens in all)=========
|
=========Last token cost average xx.xxxxs (31 tokens in all)=========
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## GPU Usage
|
||||||
|
Just put this file into your benchmark directory, and then wrap your transformer int4 model with `BenchmarkWrapper` (`model = BenchmarkWrapper(model)`).
|
||||||
|
Take `chatglm-6b` as an example:
|
||||||
|
```python
|
||||||
|
import torch
|
||||||
|
import os
|
||||||
|
import intel_extension_for_pytorch as ipex
|
||||||
|
from bigdl.llm.transformers import AutoModel
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
import time
|
||||||
|
import numpy as np
|
||||||
|
from gpu_benchmark_util import BenchmarkWrapper
|
||||||
|
|
||||||
|
model_path ='THUDM/chatglm-6b'
|
||||||
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True)
|
||||||
|
model = model.half().to('xpu')
|
||||||
|
model = BenchmarkWrapper(model)
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
prompt = "今天睡不着怎么办"
|
||||||
|
|
||||||
|
with torch.inference_mode():
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||||
|
output = model.generate(input_ids, do_sample=False, max_new_tokens=32)
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
```
|
||||||
|
Output will be like:
|
||||||
|
```bash
|
||||||
|
=========First token cost xx.xxxxs=========
|
||||||
|
=========Last token cost average xx.xxxxs (31 tokens in all)=========
|
||||||
|
```
|
||||||
|
|
|
||||||
4685
python/llm/dev/benchmark/gpu_benchmark_util.py
Normal file
4685
python/llm/dev/benchmark/gpu_benchmark_util.py
Normal file
File diff suppressed because it is too large
Load diff
Loading…
Reference in a new issue