Add CPU and GPU examples for DeciLM-7B (#9867)
* Add cpu and gpu examples for DeciLM-7B * Add cpu and gpu examples for DeciLM-7B * Add DeciLM-7B to README table * modify deciLM * modify deciLM * modify deciLM * Add verified model in README * Add cpu_embedding=True
This commit is contained in:
parent
04a6b0040c
commit
843fe546b0
10 changed files with 702 additions and 1 deletions
|
|
@ -193,6 +193,7 @@ Over 40 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
|
||||||
| Phi-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-2) |
|
| Phi-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/phi-2) |
|
||||||
| Yuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/yuan2) |
|
| Yuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/yuan2) |
|
||||||
| Gemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/gemma) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/gemma) |
|
| Gemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/gemma) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/gemma) |
|
||||||
|
| DeciLM-7B | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deciLM-7b) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/deciLM-7b) |
|
||||||
|
|
||||||
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
|
***For more details, please refer to the `bigdl-llm` [Document](https://test-bigdl-llm.readthedocs.io/en/main/doc/LLM/index.html), [Readme](python/llm), [Tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) and [API Doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/LLM/index.html).***
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -84,7 +84,7 @@ Over 20 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLa
|
||||||
| Ziya-Coding-34B-v1.0 | [link](example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
|
| Ziya-Coding-34B-v1.0 | [link](example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
|
||||||
| Phi-2 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-2) |
|
| Phi-2 | [link](example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](example/GPU/HF-Transformers-AutoModels/Model/phi-2) |
|
||||||
| Yuan2 | [link](example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](example/GPU/HF-Transformers-AutoModels/Model/yuan2) |
|
| Yuan2 | [link](example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](example/GPU/HF-Transformers-AutoModels/Model/yuan2) |
|
||||||
|
| DeciLM-7B | [link](example/CPU/HF-Transformers-AutoModels/Model/deciLM-7b) | [link](example/GPU/HF-Transformers-AutoModels/Model/deciLM-7b) |
|
||||||
### Working with `bigdl-llm`
|
### Working with `bigdl-llm`
|
||||||
|
|
||||||
<details><summary>Table of Contents</summary>
|
<details><summary>Table of Contents</summary>
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,69 @@
|
||||||
|
# DeciLM-7B
|
||||||
|
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on DeciLM-7B models. For illustration purposes, we utilize the [Deci/DeciLM-7B-instruct](https://huggingface.co/Deci/DeciLM-7B-instruct) as a reference DeciLM-7B model.
|
||||||
|
|
||||||
|
## 0. Requirements
|
||||||
|
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for a DeciLM-7B model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
|
||||||
|
pip install transformers==4.35.2 # required by DeciLM-7B
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Run
|
||||||
|
```
|
||||||
|
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the DeciLM-7B model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Deci/DeciLM-7B-instruct'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
> **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
|
||||||
|
>
|
||||||
|
> Please select the appropriate size of the DeciLM-7B model based on the capabilities of your machine.
|
||||||
|
|
||||||
|
#### 2.1 Client
|
||||||
|
On client Windows machine, it is recommended to run directly with full utilization of all cores:
|
||||||
|
```powershell
|
||||||
|
python ./generate.py
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 2.2 Server
|
||||||
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
||||||
|
E.g. on Linux,
|
||||||
|
```bash
|
||||||
|
# set BigDL-LLM env variables
|
||||||
|
source bigdl-llm-init
|
||||||
|
|
||||||
|
# e.g. for a server with 48 cores per socket
|
||||||
|
export OMP_NUM_THREADS=48
|
||||||
|
numactl -C 0-47 -m 0 python ./generate.py
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 2.3 Sample Output
|
||||||
|
#### [Deci/DeciLM-7B-instruct](https://huggingface.co/Deci/DeciLM-7B-instruct)
|
||||||
|
```log
|
||||||
|
Inference time: XXXX s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
### System:
|
||||||
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||||
|
### User:
|
||||||
|
What is AI?
|
||||||
|
### Assistant:
|
||||||
|
-------------------- Output --------------------
|
||||||
|
### System:
|
||||||
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||||
|
### User:
|
||||||
|
What is AI?
|
||||||
|
### Assistant:
|
||||||
|
AI stands for Artificial Intelligence, which refers to the development of computer systems and software that can perform tasks that typically require human intelligence, such as recognizing patterns
|
||||||
|
```
|
||||||
|
|
@ -0,0 +1,71 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
# here the prompt tuning refers to https://huggingface.co/Deci/DeciLM-7B-instruct#prompt-template
|
||||||
|
SYSTEM_PROMPT_TEMPLATE ="""
|
||||||
|
### System:
|
||||||
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||||
|
### User:
|
||||||
|
{prompt}
|
||||||
|
### Assistant:
|
||||||
|
"""
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for DeciLM-7B model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="Deci/DeciLM-7B-instruct",
|
||||||
|
help='The huggingface repo id for the DeciLM-7B (e.g. `Deci/DeciLM-7B-instruct`) to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
trust_remote_code=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = SYSTEM_PROMPT_TEMPLATE.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
st = time.time()
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
end = time.time()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print(prompt)
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
|
|
||||||
|
|
@ -0,0 +1,69 @@
|
||||||
|
# DeciLM-7B
|
||||||
|
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate DeciLM-7B models. For illustration purposes, we utilize the [Deci/DeciLM-7B-instruct](https://huggingface.co/Deci/DeciLM-7B-instruct) as a reference DeciLM-7B model.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for a DeciLM-7B model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations.
|
||||||
|
### 1. Install
|
||||||
|
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||||
|
|
||||||
|
After installing conda, create a Python environment for BigDL-LLM:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
pip install --pre --upgrade bigdl-llm[all] # install the latest bigdl-llm nightly build with 'all' option
|
||||||
|
pip install transformers==4.35.2 # required by DeciLM-7B
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Run
|
||||||
|
After setting up the Python environment, you could run the example by following steps.
|
||||||
|
|
||||||
|
#### 2.1 Client
|
||||||
|
On client Windows machines, it is recommended to run directly with full utilization of all cores:
|
||||||
|
```powershell
|
||||||
|
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
|
#### 2.2 Server
|
||||||
|
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
|
||||||
|
|
||||||
|
E.g. on Linux,
|
||||||
|
```bash
|
||||||
|
# set BigDL-LLM env variables
|
||||||
|
source bigdl-llm-init
|
||||||
|
|
||||||
|
# e.g. for a server with 48 cores per socket
|
||||||
|
export OMP_NUM_THREADS=48
|
||||||
|
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
|
||||||
|
```
|
||||||
|
More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section.
|
||||||
|
|
||||||
|
#### 2.3 Arguments Info
|
||||||
|
In the example, several arguments can be passed to satisfy your requirements:
|
||||||
|
|
||||||
|
- `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the DeciLM-7B model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Deci/DeciLM-7B-instruct'`.
|
||||||
|
- `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||||
|
- `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
#### 2.4 Sample Output
|
||||||
|
#### [Deci/DeciLM-7B-instruct](https://huggingface.co/Deci/DeciLM-7B-instruct)
|
||||||
|
```log
|
||||||
|
Inference time: XXXX s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
### System:
|
||||||
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||||
|
### User:
|
||||||
|
What is AI?
|
||||||
|
### Assistant:
|
||||||
|
-------------------- Output --------------------
|
||||||
|
### System:
|
||||||
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||||
|
### User:
|
||||||
|
What is AI?
|
||||||
|
### Assistant:
|
||||||
|
AI stands for Artificial Intelligence, which refers to the development of computer systems and software that can perform tasks that typically require human intelligence, such as recognizing patterns
|
||||||
|
```
|
||||||
|
|
@ -0,0 +1,72 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
from bigdl.llm import optimize_model
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
# here the prompt tuning refers to https://huggingface.co/Deci/DeciLM-7B-instruct#prompt-template
|
||||||
|
SYSTEM_PROMPT_TEMPLATE ="""
|
||||||
|
### System:
|
||||||
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||||
|
### User:
|
||||||
|
{prompt}
|
||||||
|
### Assistant:
|
||||||
|
"""
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for DeciLM-7B model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="Deci/DeciLM-7B-instruct",
|
||||||
|
help='The huggingface repo id for the DeciLM-7B (e.g. `Deci/DeciLM-7B-instruct`) to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_path,
|
||||||
|
trust_remote_code=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# With only one line to enable BigDL-LLM optimization on model
|
||||||
|
model = optimize_model(model)
|
||||||
|
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = SYSTEM_PROMPT_TEMPLATE.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
||||||
|
st = time.time()
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
end = time.time()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
|
|
||||||
|
|
@ -0,0 +1,130 @@
|
||||||
|
# DeciLM-7B
|
||||||
|
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on DeciLM-7B models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [Deci/DeciLM-7B-instruct](https://huggingface.co/Deci/DeciLM-7B-instruct) as a reference DeciLM-7B model.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for a DeciLM-7B model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
|
||||||
|
### 1. Install
|
||||||
|
#### 1.1 Installation on Linux
|
||||||
|
We suggest using conda to manage environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||||
|
|
||||||
|
After installing conda, create a Python environment for BigDL-LLM:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9
|
||||||
|
conda activate llm
|
||||||
|
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||||
|
# you can install specific ipex/torch version for your need
|
||||||
|
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||||
|
pip install transformers==4.35.2 # required by DeciLM-7B
|
||||||
|
```
|
||||||
|
#### 1.2 Installation on Windows
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9 libuv
|
||||||
|
conda activate llm
|
||||||
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||||
|
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||||
|
pip install transformers==4.35.2 # required by DeciLM-7B
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Configures OneAPI environment variables
|
||||||
|
#### 2.1 Configurations for Linux
|
||||||
|
```bash
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
```
|
||||||
|
#### 2.2 Configurations for Windows
|
||||||
|
```cmd
|
||||||
|
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
|
||||||
|
```
|
||||||
|
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
|
||||||
|
### 3. Runtime Configurations
|
||||||
|
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
|
||||||
|
#### 3.1 Configurations for Linux
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export USE_XETLA=OFF
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Data Center GPU Max Series</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
export ENABLE_SDP_FUSION=1
|
||||||
|
```
|
||||||
|
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### 3.2 Configurations for Windows
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel iGPU</summary>
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
set SYCL_CACHE_PERSISTENT=1
|
||||||
|
set BIGDL_LLM_XMX_DISABLED=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Arc™ A300-Series or Pro A60</summary>
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
set SYCL_CACHE_PERSISTENT=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For other Intel dGPU Series</summary>
|
||||||
|
|
||||||
|
There is no need to set further environment variables.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||||
|
|
||||||
|
### 4. Running examples
|
||||||
|
|
||||||
|
```
|
||||||
|
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||||
|
```
|
||||||
|
|
||||||
|
Arguments info:
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the DeciLM-7B model (e.g `Deci/DeciLM-7B-instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Deci/DeciLM-7B-instruct'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
#### Sample Output
|
||||||
|
#### [Deci/DeciLM-7B-instruct](https://huggingface.co/Deci/DeciLM-7B-instruct)
|
||||||
|
|
||||||
|
```log
|
||||||
|
Inference time: XXXX s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
### System:
|
||||||
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||||
|
### User:
|
||||||
|
What is AI?
|
||||||
|
### Assistant:
|
||||||
|
-------------------- Output --------------------
|
||||||
|
### System:
|
||||||
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||||
|
### User:
|
||||||
|
What is AI?
|
||||||
|
### Assistant:
|
||||||
|
AI stands for Artificial Intelligence, which refers to the development of computer systems and software that can perform tasks that typically require human intelligence, such as recognizing patterns
|
||||||
|
```
|
||||||
|
|
@ -0,0 +1,78 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
# here the prompt tuning refers to https://huggingface.co/Deci/DeciLM-7B-instruct#prompt-template
|
||||||
|
SYSTEM_PROMPT_TEMPLATE ="""
|
||||||
|
### System:
|
||||||
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||||
|
### User:
|
||||||
|
{prompt}
|
||||||
|
### Assistant:
|
||||||
|
"""
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for DeciLM-7B model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="Deci/DeciLM-7B-instruct",
|
||||||
|
help='The huggingface repo id for the DeciLM-7B (e.g. `Deci/DeciLM-7B-instruct`) to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
# Load model in 4 bit,
|
||||||
|
# which convert the relevant layers in the model into INT4 format
|
||||||
|
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
|
||||||
|
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_path,
|
||||||
|
load_in_4bit=True,
|
||||||
|
trust_remote_code=True,
|
||||||
|
cpu_embedding=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# With only one line to enable BigDL-LLM optimization on model
|
||||||
|
model = model.to('xpu')
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = SYSTEM_PROMPT_TEMPLATE.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||||
|
st = time.time()
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
torch.xpu.synchronize()
|
||||||
|
end = time.time()
|
||||||
|
output = output.cpu()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
|
|
||||||
132
python/llm/example/GPU/PyTorch-Models/Model/deciLM-7b/README.md
Normal file
132
python/llm/example/GPU/PyTorch-Models/Model/deciLM-7b/README.md
Normal file
|
|
@ -0,0 +1,132 @@
|
||||||
|
# DeciLM-7B
|
||||||
|
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate DeciLM-7B models. For illustration purposes, we utilize the [Deci/DeciLM-7B-instruct](https://huggingface.co/Deci/DeciLM-7B-instruct) as a reference DeciLM-7B model.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||||
|
|
||||||
|
## Example: Predict Tokens using `generate()` API
|
||||||
|
In the example [generate.py](./generate.py), we show a basic use case for a DeciLM-7B model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
|
||||||
|
### 1. Install
|
||||||
|
#### 1.1 Installation on Linux
|
||||||
|
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://docs.conda.io/en/latest/miniconda.html#).
|
||||||
|
|
||||||
|
After installing conda, create a Python environment for BigDL-LLM:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9 # recommend to use Python 3.9
|
||||||
|
conda activate llm
|
||||||
|
|
||||||
|
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||||
|
# you can install specific ipex/torch version for your need
|
||||||
|
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||||
|
pip install transformers==4.35.2 # required by DeciLM-7B
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 1.2 Installation on Windows
|
||||||
|
We suggest using conda to manage environment:
|
||||||
|
```bash
|
||||||
|
conda create -n llm python=3.9 libuv
|
||||||
|
conda activate llm
|
||||||
|
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
|
||||||
|
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Configures OneAPI environment variables
|
||||||
|
#### 2.1 Configurations for Linux
|
||||||
|
```bash
|
||||||
|
source /opt/intel/oneapi/setvars.sh
|
||||||
|
```
|
||||||
|
#### 2.2 Configurations for Windows
|
||||||
|
```cmd
|
||||||
|
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
|
||||||
|
```
|
||||||
|
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
|
||||||
|
### 3. Runtime Configurations
|
||||||
|
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
|
||||||
|
#### 3.1 Configurations for Linux
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export USE_XETLA=OFF
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Data Center GPU Max Series</summary>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
|
||||||
|
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||||
|
export ENABLE_SDP_FUSION=1
|
||||||
|
```
|
||||||
|
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### 3.2 Configurations for Windows
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel iGPU</summary>
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
set SYCL_CACHE_PERSISTENT=1
|
||||||
|
set BIGDL_LLM_XMX_DISABLED=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For Intel Arc™ A300-Series or Pro A60</summary>
|
||||||
|
|
||||||
|
```cmd
|
||||||
|
set SYCL_CACHE_PERSISTENT=1
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>For other Intel dGPU Series</summary>
|
||||||
|
|
||||||
|
There is no need to set further environment variables.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
|
||||||
|
|
||||||
|
### 4. Running examples
|
||||||
|
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
|
||||||
|
```
|
||||||
|
|
||||||
|
In the example, several arguments can be passed to satisfy your requirements:
|
||||||
|
|
||||||
|
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the DeciLM-7B model (e.g `Deci/DeciLM-7B-instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Deci/DeciLM-7B-instruct'`.
|
||||||
|
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
|
||||||
|
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||||
|
|
||||||
|
#### Sample Output
|
||||||
|
#### [Deci/DeciLM-7B-instruct](https://huggingface.co/Deci/DeciLM-7B-instruct)
|
||||||
|
```log
|
||||||
|
Inference time: XXXX s
|
||||||
|
-------------------- Prompt --------------------
|
||||||
|
### System:
|
||||||
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||||
|
### User:
|
||||||
|
What is AI?
|
||||||
|
### Assistant:
|
||||||
|
-------------------- Output --------------------
|
||||||
|
### System:
|
||||||
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||||
|
### User:
|
||||||
|
What is AI?
|
||||||
|
### Assistant:
|
||||||
|
AI stands for Artificial Intelligence, which refers to the development of computer systems and software that can perform tasks that typically require human intelligence, such as recognizing patterns
|
||||||
|
```
|
||||||
|
|
@ -0,0 +1,79 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
from bigdl.llm import optimize_model
|
||||||
|
|
||||||
|
# you could tune the prompt based on your own model,
|
||||||
|
# here the prompt tuning refers to https://huggingface.co/Deci/DeciLM-7B-instruct#prompt-template
|
||||||
|
SYSTEM_PROMPT_TEMPLATE ="""
|
||||||
|
### System:
|
||||||
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
||||||
|
### User:
|
||||||
|
{prompt}
|
||||||
|
### Assistant:
|
||||||
|
"""
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for DeciLM-7B model')
|
||||||
|
parser.add_argument('--repo-id-or-model-path', type=str, default="Deci/DeciLM-7B-instruct",
|
||||||
|
help='The huggingface repo id for the DeciLM-7B (e.g. `Deci/DeciLM-7B-instruct`) to be downloaded'
|
||||||
|
', or the path to the huggingface checkpoint folder')
|
||||||
|
parser.add_argument('--prompt', type=str, default="What is AI?",
|
||||||
|
help='Prompt to infer')
|
||||||
|
parser.add_argument('--n-predict', type=int, default=32,
|
||||||
|
help='Max tokens to predict')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_path = args.repo_id_or_model_path
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_path,
|
||||||
|
trust_remote_code=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# With only one line to enable BigDL-LLM optimization on model
|
||||||
|
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
|
||||||
|
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
|
||||||
|
model = optimize_model(
|
||||||
|
model,
|
||||||
|
cpu_embedding=True
|
||||||
|
)
|
||||||
|
model = model.to('xpu')
|
||||||
|
# Load tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
|
# Generate predicted tokens
|
||||||
|
with torch.inference_mode():
|
||||||
|
prompt = SYSTEM_PROMPT_TEMPLATE.format(prompt=args.prompt)
|
||||||
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||||
|
st = time.time()
|
||||||
|
output = model.generate(input_ids,
|
||||||
|
max_new_tokens=args.n_predict)
|
||||||
|
torch.xpu.synchronize()
|
||||||
|
end = time.time()
|
||||||
|
output = output.cpu()
|
||||||
|
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
|
print(f'Inference time: {end-st} s')
|
||||||
|
print('-'*20, 'Output', '-'*20)
|
||||||
|
print(output_str)
|
||||||
|
|
||||||
Loading…
Reference in a new issue