Update docker image tags in Docker Quickstart (#11061)

* update docker image tag to latest

* add note

* simplify note

* add link in reStructuredText

* minor fix

* update tag
This commit is contained in:
Shaojun Liu 2024-05-17 11:06:11 +08:00 committed by GitHub
parent b3027e2d60
commit 84239d0bd3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 17 additions and 10 deletions

View file

@ -2,6 +2,13 @@
We can run PyTorch Inference Benchmark, Chat Service and PyTorch Examples on Intel GPUs within Docker (on Linux or WSL).
```eval_rst
.. note::
The current Windows + WSL + Docker solution only supports Arc series dGPU. For Windows users with MTL iGPU, it is recommended to install directly via pip install in Anaconda Prompt. Refer to `this guide <https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_windows_gpu.html>`_.
```
## Install Docker
Follow the [Docker installation Guide](./docker_windows_gpu.html#install-docker) to install docker on either Linux or Windows.
@ -10,7 +17,7 @@ Follow the [Docker installation Guide](./docker_windows_gpu.html#install-docker)
Prepare ipex-llm-xpu Docker Image:
```bash
docker pull intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
docker pull intelanalytics/ipex-llm-xpu:latest
```
Start ipex-llm-xpu Docker Container:
@ -21,7 +28,7 @@ Start ipex-llm-xpu Docker Container:
.. code-block:: bash
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:latest
export CONTAINER_NAME=my_container
export MODEL_PATH=/llm/models[change to your model path]
@ -39,7 +46,7 @@ Start ipex-llm-xpu Docker Container:
.. code-block:: bash
#/bin/bash
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT
export DOCKER_IMAGE=intelanalytics/ipex-llm-xpu:latest
export CONTAINER_NAME=my_container
export MODEL_PATH=/llm/models[change to your model path]

View file

@ -80,13 +80,13 @@ We have several docker images available for running LLMs on Intel GPUs. The foll
| Image Name | Description | Use Case |
|------------|-------------|----------|
| intelanalytics/ipex-llm-cpu:2.1.0-SNAPSHOT | CPU Inference |For development and running LLMs using llama.cpp, Ollama and Python|
| intelanalytics/ipex-llm-xpu:2.1.0-SNAPSHOT | GPU Inference |For development and running LLMs using llama.cpp, Ollama and Python|
| intelanalytics/ipex-llm-serving-cpu:2.1.0-SNAPSHOT | CPU Serving|For serving multiple users/requests through REST APIs using vLLM/FastChat|
| intelanalytics/ipex-llm-serving-xpu:2.1.0-SNAPSHOT | GPU Serving|For serving multiple users/requests through REST APIs using vLLM/FastChat|
| intelanalytics/ipex-llm-finetune-qlora-cpu-standalone:2.1.0-SNAPSHOT | CPU Finetuning via Docker|For fine-tuning LLMs using QLora/Lora, etc. |
|intelanalytics/ipex-llm-finetune-qlora-cpu-k8s:2.1.0-SNAPSHOT|CPU Finetuning via Kubernetes|For fine-tuning LLMs using QLora/Lora, etc. |
| intelanalytics/ipex-llm-finetune-qlora-xpu:2.1.0-SNAPSHOT| GPU Finetuning|For fine-tuning LLMs using QLora/Lora, etc.|
| intelanalytics/ipex-llm-cpu:latest | CPU Inference |For development and running LLMs using llama.cpp, Ollama and Python|
| intelanalytics/ipex-llm-xpu:latest | GPU Inference |For development and running LLMs using llama.cpp, Ollama and Python|
| intelanalytics/ipex-llm-serving-cpu:latest | CPU Serving|For serving multiple users/requests through REST APIs using vLLM/FastChat|
| intelanalytics/ipex-llm-serving-xpu:latest | GPU Serving|For serving multiple users/requests through REST APIs using vLLM/FastChat|
| intelanalytics/ipex-llm-finetune-qlora-cpu-standalone:latest | CPU Finetuning via Docker|For fine-tuning LLMs using QLora/Lora, etc. |
|intelanalytics/ipex-llm-finetune-qlora-cpu-k8s:latest|CPU Finetuning via Kubernetes|For fine-tuning LLMs using QLora/Lora, etc. |
| intelanalytics/ipex-llm-finetune-qlora-xpu:latest| GPU Finetuning|For fine-tuning LLMs using QLora/Lora, etc.|
We have also provided several quickstarts for various usage scenarios:
- [Run and develop LLM applications in PyTorch](./docker_pytorch_inference_gpu.html)