add initial support for intel npu acceleration library (#11347)

This commit is contained in:
Yishuo Wang 2024-06-18 16:07:16 +08:00 committed by GitHub
parent 694912698e
commit 83082e5cc7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 143 additions and 0 deletions

View file

@ -27,7 +27,9 @@ import sys
import types import types
# Default is false, set to true to auto importing Intel Extension for PyTorch. # Default is false, set to true to auto importing Intel Extension for PyTorch.
USE_NPU = os.getenv("BIGDL_USE_NPU", 'False').lower() in ('true', '1', 't')
BIGDL_IMPORT_IPEX = os.getenv("BIGDL_IMPORT_IPEX", 'True').lower() in ('true', '1', 't') BIGDL_IMPORT_IPEX = os.getenv("BIGDL_IMPORT_IPEX", 'True').lower() in ('true', '1', 't')
BIGDL_IMPORT_IPEX = not USE_NPU and BIGDL_IMPORT_IPEX
if BIGDL_IMPORT_IPEX: if BIGDL_IMPORT_IPEX:
# Import Intel Extension for PyTorch as ipex if XPU version is installed # Import Intel Extension for PyTorch as ipex if XPU version is installed
from .utils.ipex_importer import ipex_importer from .utils.ipex_importer import ipex_importer

View file

@ -0,0 +1,141 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import warnings
import torch
import transformers
from typing import List
from unittest.mock import patch
from transformers.dynamic_module_utils import get_imports
import intel_npu_acceleration_library as npu_lib
from intel_npu_acceleration_library.dtypes import int8, int4
from ipex_llm.utils.common.log4Error import invalidInputError
def patch_flash_attn_import(filename: str) -> List[str]:
"""Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72."""
imports = get_imports(filename)
if "flash_attn" in imports:
imports.remove("flash_attn")
return imports
def ignore_argument(kwargs: dict, key: 'str'):
arg = kwargs.pop(key, None)
if arg is not None:
warnings.warn(f"argument `{key}={arg}` will be ignored")
class _BaseAutoModelClass:
HF_MODEL = None
@classmethod
@patch("transformers.dynamic_module_utils.get_imports", patch_flash_attn_import)
def from_pretrained(cls,
*args,
**kwargs):
"""
Load a model from a directory or the HF Hub. Use load_in_low_bit parameter to convert
model to low-bit format, like int4 and int8.
The loaded model will run supported OPs on NPU, then run other OPs on CPU.
Three new arguments are added to extend Hugging Face's from_pretrained method as follows:
:param load_in_low_bit: str value, options are ``'sym_int4'``, ``'sym_int8'``, ``'fp32'``.
Relevant low bit optimizations will be applied to the model.
:return: a model instance
"""
if kwargs.get('device_map', None) not in [None, 'cpu', 'auto']:
warnings.warn("`device_map` will be ignored")
kwargs['device_map'] = 'cpu'
low_bit = kwargs.pop('load_in_low_bit', None)
low_bit_to_dtype_map = {
'sym_int4': int4,
'sym_int8': int8,
'fp32': torch.float,
}
if low_bit is not None:
dtype = low_bit_to_dtype_map[low_bit]
else:
dtype = kwargs.get('torch_dtype', torch.float)
dtype = torch.float if dtype == 'auto' else dtype
invalidInputError(dtype in low_bit_to_dtype_map.values(),
f"unsupported dtype: {dtype}, "
"only `sym_int4`, `sym_int8`, `fp32` are supported")
kwargs["low_cpu_mem_usage"] = True
# ignore following arguments
ignore_argument(kwargs, "model_hub")
ignore_argument(kwargs, "lightweight_bmm")
ignore_argument(kwargs, "load_in_4bit")
ignore_argument(kwargs, "load_in_8bit")
ignore_argument(kwargs, "imatrix")
ignore_argument(kwargs, "mixed_precision")
ignore_argument(kwargs, "cpu_embedding")
ignore_argument(kwargs, "embedding_qtype")
ignore_argument(kwargs, "optimize_model")
ignore_argument(kwargs, "modules_to_not_convert")
ignore_argument(kwargs, "quantization_config")
ignore_argument(kwargs, "speculative")
ignore_argument(kwargs, "pipeline_parallel_stages")
model = cls.HF_Model.from_pretrained(*args, **kwargs)
model = npu_lib.compile(model, dtype, False)
return model
class AutoModelForCausalLM(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForCausalLM
class AutoModel(_BaseAutoModelClass):
HF_Model = transformers.AutoModel
class AutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForSpeechSeq2Seq
class AutoModelForSeq2SeqLM(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForSeq2SeqLM
class AutoModelForSequenceClassification(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForSequenceClassification
class AutoModelForMaskedLM(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForMaskedLM
class AutoModelForQuestionAnswering(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForQuestionAnswering
class AutoModelForNextSentencePrediction(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForNextSentencePrediction
class AutoModelForMultipleChoice(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForMultipleChoice
class AutoModelForTokenClassification(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForTokenClassification