remove unused code (#12635)

This commit is contained in:
Yishuo Wang 2025-01-02 13:31:09 +08:00 committed by GitHub
parent 534566e290
commit 81211fd010
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 47 additions and 79 deletions

View file

@ -29,7 +29,7 @@ from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp
should_use_compresskv
from ipex_llm.transformers.models.utils import update_past_key_value
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp
from ipex_llm.transformers.models.utils import use_sdp
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU
from ipex_llm.transformers.models.utils import mlp_fusion_check
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36
@ -301,12 +301,6 @@ def baichuan_attention_forward_7b(
# IPEX-LLM OPT: sdp
attn_weights = None
if use_flash_attention(query_states, key_states, attention_mask):
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
key_states.to(dtype=torch.float16),
value_states.to(dtype=torch.float16),
is_causal=True).to(hidden_states.dtype)
else:
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len

View file

@ -23,7 +23,7 @@ import torch.utils.checkpoint
import torch.nn.functional as F
from typing import Optional, Tuple
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp
from ipex_llm.transformers.models.utils import use_sdp
def rotate_half(x):
@ -41,7 +41,7 @@ def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
def glm_sdpa(query, key, value, attention_mask=None, is_causal=False):
if use_flash_attention(query, key, attention_mask) or query.device.type == 'cpu':
if query.device.type == 'cpu':
context_layer = F.scaled_dot_product_attention(query.to(key.dtype),
key,
value,

View file

@ -33,7 +33,6 @@ from ipex_llm.transformers.models.utils import update_past_key_value, should_use
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
from ipex_llm.transformers.models.utils import rotate_half, SILU
from ipex_llm.transformers.models.utils import mlp_fusion_check
from ipex_llm.transformers.models.utils import use_flash_attention
from ipex_llm.utils.common import invalidInputError
from transformers.modeling_outputs import BaseModelOutputWithPast
@ -116,14 +115,9 @@ def qwen_attention_forward(
past_key_value = (key_states.transpose(1, 2),
value_states.transpose(1, 2)) if use_cache else None
# IPEX-LLM OPT: sdp
# IPEX-LLM OPT: sdpa
attn_weights = None
if use_flash_attention(query_states, key_states, attention_mask):
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
key_states.to(dtype=torch.float16),
value_states.to(dtype=torch.float16),
is_causal=True).to(hidden_states.dtype)
else:
if q_len > 1 and q_len != kv_seq_len:
causal_mask = torch.tril(
torch.ones((kv_seq_len, kv_seq_len), dtype=torch.bool, device=query_states.device)
@ -219,15 +213,9 @@ def qwen_attention_forward_registered(
past_key_value = (key_states.transpose(1, 2),
value_states.transpose(1, 2)) if use_cache else None
# IPEX-LLM OPT: sdp
# IPEX-LLM OPT: sdpa
attn_weights = None
if use_flash_attention(query_states, key_states, attention_mask):
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
key_states.to(dtype=torch.float16),
value_states.to(dtype=torch.float16),
is_causal=True).to(hidden_states.dtype)
else:
if q_len > 1 and q_len != kv_seq_len:
causal_mask = registered_causal_mask[
:, :, kv_seq_len - q_len:kv_seq_len, :kv_seq_len

View file

@ -38,12 +38,10 @@
#
import os
import math
from typing import Optional, Tuple, Union, List
import torch
from torch.nn import CrossEntropyLoss
from torch.nn.functional import scaled_dot_product_attention as sdpa
from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.common import scaled_dot_product_attention
@ -51,13 +49,12 @@ from ipex_llm.transformers.models.utils import SILU, mlp_fusion_check
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, \
should_use_compresskv, is_enough_kv_cache_room_4_36
from ipex_llm.transformers.models.utils import use_flash_attention
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \
DynamicCompressCache, DynamicCompressFp8Cache
from ipex_llm.utils.common import invalidInputError
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2MLP
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb, repeat_kv
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.cache_utils import Cache
from transformers import logging
@ -580,17 +577,6 @@ def qwen2_attention_forward(
self.layer_idx, None)
attn_weights = None
if use_flash_attention(query_states, key_states, attention_mask):
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, :kv_seq_len]
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_output = sdpa(query_states.to(device, dtype=torch.float16),
key_states.to(device, dtype=torch.float16),
value_states.to(device, dtype=torch.float16),
is_causal=True).to(hidden_states.dtype)
else:
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len