remove unused code (#12635)
This commit is contained in:
parent
534566e290
commit
81211fd010
4 changed files with 47 additions and 79 deletions
|
|
@ -29,7 +29,7 @@ from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp
|
||||||
should_use_compresskv
|
should_use_compresskv
|
||||||
from ipex_llm.transformers.models.utils import update_past_key_value
|
from ipex_llm.transformers.models.utils import update_past_key_value
|
||||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
||||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp
|
from ipex_llm.transformers.models.utils import use_sdp
|
||||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU
|
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU
|
||||||
from ipex_llm.transformers.models.utils import mlp_fusion_check
|
from ipex_llm.transformers.models.utils import mlp_fusion_check
|
||||||
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36
|
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36
|
||||||
|
|
@ -301,12 +301,6 @@ def baichuan_attention_forward_7b(
|
||||||
|
|
||||||
# IPEX-LLM OPT: sdp
|
# IPEX-LLM OPT: sdp
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
if use_flash_attention(query_states, key_states, attention_mask):
|
|
||||||
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
|
|
||||||
key_states.to(dtype=torch.float16),
|
|
||||||
value_states.to(dtype=torch.float16),
|
|
||||||
is_causal=True).to(hidden_states.dtype)
|
|
||||||
else:
|
|
||||||
attn_output = scaled_dot_product_attention(
|
attn_output = scaled_dot_product_attention(
|
||||||
query_states, key_states, value_states,
|
query_states, key_states, value_states,
|
||||||
attention_mask, q_len == kv_seq_len
|
attention_mask, q_len == kv_seq_len
|
||||||
|
|
|
||||||
|
|
@ -23,7 +23,7 @@ import torch.utils.checkpoint
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||||
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp
|
from ipex_llm.transformers.models.utils import use_sdp
|
||||||
|
|
||||||
|
|
||||||
def rotate_half(x):
|
def rotate_half(x):
|
||||||
|
|
@ -41,7 +41,7 @@ def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
|
||||||
|
|
||||||
|
|
||||||
def glm_sdpa(query, key, value, attention_mask=None, is_causal=False):
|
def glm_sdpa(query, key, value, attention_mask=None, is_causal=False):
|
||||||
if use_flash_attention(query, key, attention_mask) or query.device.type == 'cpu':
|
if query.device.type == 'cpu':
|
||||||
context_layer = F.scaled_dot_product_attention(query.to(key.dtype),
|
context_layer = F.scaled_dot_product_attention(query.to(key.dtype),
|
||||||
key,
|
key,
|
||||||
value,
|
value,
|
||||||
|
|
|
||||||
|
|
@ -33,7 +33,6 @@ from ipex_llm.transformers.models.utils import update_past_key_value, should_use
|
||||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
|
||||||
from ipex_llm.transformers.models.utils import rotate_half, SILU
|
from ipex_llm.transformers.models.utils import rotate_half, SILU
|
||||||
from ipex_llm.transformers.models.utils import mlp_fusion_check
|
from ipex_llm.transformers.models.utils import mlp_fusion_check
|
||||||
from ipex_llm.transformers.models.utils import use_flash_attention
|
|
||||||
from ipex_llm.utils.common import invalidInputError
|
from ipex_llm.utils.common import invalidInputError
|
||||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
|
|
||||||
|
|
@ -116,14 +115,9 @@ def qwen_attention_forward(
|
||||||
past_key_value = (key_states.transpose(1, 2),
|
past_key_value = (key_states.transpose(1, 2),
|
||||||
value_states.transpose(1, 2)) if use_cache else None
|
value_states.transpose(1, 2)) if use_cache else None
|
||||||
|
|
||||||
# IPEX-LLM OPT: sdp
|
# IPEX-LLM OPT: sdpa
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
if use_flash_attention(query_states, key_states, attention_mask):
|
|
||||||
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
|
|
||||||
key_states.to(dtype=torch.float16),
|
|
||||||
value_states.to(dtype=torch.float16),
|
|
||||||
is_causal=True).to(hidden_states.dtype)
|
|
||||||
else:
|
|
||||||
if q_len > 1 and q_len != kv_seq_len:
|
if q_len > 1 and q_len != kv_seq_len:
|
||||||
causal_mask = torch.tril(
|
causal_mask = torch.tril(
|
||||||
torch.ones((kv_seq_len, kv_seq_len), dtype=torch.bool, device=query_states.device)
|
torch.ones((kv_seq_len, kv_seq_len), dtype=torch.bool, device=query_states.device)
|
||||||
|
|
@ -219,15 +213,9 @@ def qwen_attention_forward_registered(
|
||||||
past_key_value = (key_states.transpose(1, 2),
|
past_key_value = (key_states.transpose(1, 2),
|
||||||
value_states.transpose(1, 2)) if use_cache else None
|
value_states.transpose(1, 2)) if use_cache else None
|
||||||
|
|
||||||
# IPEX-LLM OPT: sdp
|
# IPEX-LLM OPT: sdpa
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
|
|
||||||
if use_flash_attention(query_states, key_states, attention_mask):
|
|
||||||
attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16),
|
|
||||||
key_states.to(dtype=torch.float16),
|
|
||||||
value_states.to(dtype=torch.float16),
|
|
||||||
is_causal=True).to(hidden_states.dtype)
|
|
||||||
else:
|
|
||||||
if q_len > 1 and q_len != kv_seq_len:
|
if q_len > 1 and q_len != kv_seq_len:
|
||||||
causal_mask = registered_causal_mask[
|
causal_mask = registered_causal_mask[
|
||||||
:, :, kv_seq_len - q_len:kv_seq_len, :kv_seq_len
|
:, :, kv_seq_len - q_len:kv_seq_len, :kv_seq_len
|
||||||
|
|
|
||||||
|
|
@ -38,12 +38,10 @@
|
||||||
#
|
#
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import math
|
|
||||||
from typing import Optional, Tuple, Union, List
|
from typing import Optional, Tuple, Union, List
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch.nn import CrossEntropyLoss
|
from torch.nn import CrossEntropyLoss
|
||||||
from torch.nn.functional import scaled_dot_product_attention as sdpa
|
|
||||||
|
|
||||||
from ipex_llm.transformers.models.common import merge_qkv_base
|
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
||||||
|
|
@ -51,13 +49,12 @@ from ipex_llm.transformers.models.utils import SILU, mlp_fusion_check
|
||||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
||||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, \
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, \
|
||||||
should_use_compresskv, is_enough_kv_cache_room_4_36
|
should_use_compresskv, is_enough_kv_cache_room_4_36
|
||||||
from ipex_llm.transformers.models.utils import use_flash_attention
|
|
||||||
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \
|
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \
|
||||||
DynamicCompressCache, DynamicCompressFp8Cache
|
DynamicCompressCache, DynamicCompressFp8Cache
|
||||||
from ipex_llm.utils.common import invalidInputError
|
from ipex_llm.utils.common import invalidInputError
|
||||||
|
|
||||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2MLP
|
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2MLP
|
||||||
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb, repeat_kv
|
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb
|
||||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||||||
from transformers.cache_utils import Cache
|
from transformers.cache_utils import Cache
|
||||||
from transformers import logging
|
from transformers import logging
|
||||||
|
|
@ -580,17 +577,6 @@ def qwen2_attention_forward(
|
||||||
self.layer_idx, None)
|
self.layer_idx, None)
|
||||||
|
|
||||||
attn_weights = None
|
attn_weights = None
|
||||||
if use_flash_attention(query_states, key_states, attention_mask):
|
|
||||||
if attention_mask is not None:
|
|
||||||
attention_mask = attention_mask[:, :, :, :kv_seq_len]
|
|
||||||
# repeat k/v heads if n_kv_heads < n_heads
|
|
||||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
||||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
||||||
attn_output = sdpa(query_states.to(device, dtype=torch.float16),
|
|
||||||
key_states.to(device, dtype=torch.float16),
|
|
||||||
value_states.to(device, dtype=torch.float16),
|
|
||||||
is_causal=True).to(hidden_states.dtype)
|
|
||||||
else:
|
|
||||||
attn_output = scaled_dot_product_attention(
|
attn_output = scaled_dot_product_attention(
|
||||||
query_states, key_states, value_states,
|
query_states, key_states, value_states,
|
||||||
attention_mask, q_len == kv_seq_len
|
attention_mask, q_len == kv_seq_len
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue